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Executive Summary 
 

The collaboration 
This report is the outcome of one of four projects carried out under an initiative called “Big Data Analytics and 
Transboundary Water Collaboration in Southern Africa”. This initiative is funded by USAID, the South African Department 
of Science and Technology (DST), and the SADC Groundwater Management Institute (GMI), managed primarily by the 
Water Research Commission (WRC), and with technical support from the US Geological Survey (USGS) and the IBM 
Research Africa Lab in South Africa. Overall programme coordination is by the USAID appointed programme coordinator, 
the Sustainable Water Partnership (SWP). 
 
The overall aim of the collaboration is to research how and where big data analytics or new approaches can contribute 
to improved groundwater management in Transboundary Aquifers (TBAs). 
 
Research Overview 
This project (theme 4 of the 4 projects) developed a strategy for sustainable groundwater use (SGS) which is an approach 
for achieving best practice groundwater management. The SGS sets out the benchmark for an approach to achieve 
sustainable groundwater use.  The SGS is essentially a list of actions necessary for achieving sustainable groundwater use 
and is applicable to any aquifer or group of aquifers (a groundwater basin). It is recommended that the approach be 
implemented particularly in heavily used aquifers, in aquifers with sensitive receptors, and the approach would support 
improved groundwater management in TBAs.  
 
The actions within the strategy can be met using traditional hydrogeological approaches. The four research projects under 
this collaboration tested how and where big data analytics or new approaches can support improved groundwater 
management, and each tool tested or developed in the collaboration represents a new approach to meet part of the 
strategy. The full sustainable groundwater strategy was not implemented in full in one test case, due to the scope and 
structure for these projects, and also because for the SGS to be successful it needs to be implemented by the responsible 
authority for that basin.  
 
The outcome of the programme is therefore a set of new approaches (tools) tested in various case studies, that all support 
improved sustainable groundwater management and therefore meet some of the actions required in the SGS. 
Specifically, the aims of theme 4 were to: 

 develop a sustainable groundwater strategy, reflecting a best practice approach for a sustainable groundwater 
use 

 pilot “big data” or new approaches for meeting parts of the sustainable groundwater strategy, in a case study 
site 
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Framework for a Sustainable Groundwater Strategy  
Whilst there are many standards and best practice guidelines for groundwater development at scheme level, there are 
very few for regional aquifer resources management. “Groundwater Sustainability Plans” (GSPs) are generated for major 
aquifers in California under the new Sustainable Groundwater Management Act, (California State, 2014), and have a 
relatively standard content and approach. The national modelling project in the UK similarly provides groundwater yield 
assessments for major aquifers in the UK, which are updated and inform management. However, the SADC countries do 
not have the same: there is no (routinely updated) aquifer scale groundwater resources assessment, which informs 
management plan and water use strategy, in place for most major aquifers in the SADC countries, nor the TBAs. 
 
Aquifers, under natural conditions, are in a state of dynamic equilibrium. When pumping is initiated, abstracted water is 
met from aquifer storage and water levels decline (Bredehoeft and Durbin, 2009; Sophocleous, 2000; Alley and Leake, 
2004). As the system reaches a new dynamic equilibrium the water level decline diminishes and abstracted water is met 
by a reduction in natural discharge, and potentially an increase in recharge (Bredehoeft et al, 1982, Bredehoeft, 2002, 
Devlin & Sophocleous, 2005). The time it takes the aquifer to reach this new dynamic equilibrium is termed the response 
time (Sophocleous, 2000; Alley and Leake, 2004). Water withdrawn artificially from an aquifer is therefore derived from 
a decrease in storage in the aquifer, a reduction in the previous discharge from the aquifer, an increase in the recharge, 
or a combination of these changes (Theis, 1940, cited in Bennett et al, 1988). The sum of the increase in recharge and 
decrease in discharge brought about by pumping was referred to as capture by Lohman (1972).  
 
It follows that an assessment of the sustainability of groundwater abstraction, or quantification of a sustainable yield for 
abstraction, would quantify what these changes in the flow regime related to that yield are (or will be in future, and when 
they will be realised), and determine whether the changes and their associated impacts are considered socially, 
economically and environmentally acceptable by the relevant stakeholders which needs to include the responsible 
authority, groundwater users, and representation of the environment . If the estimated changes are acceptable, the total 
yield to be abstracted for the predicted changes can be considered sustainable groundwater use (Sophocleous, 2000, 
Alley and Leake, 2004). If the abstraction rate cannot be met by capture, because it exceeds the pre-abstraction discharge 
plus any potential addition from enhanced recharge, groundwater storage continues to be the source of abstracted 
water. A new dynamic equilibrium is not achieved, and groundwater levels continue to decline.  
 
The SGS requires quantification of the current and expected changes in the groundwater balance or flows in the basin 
related to planned or potential groundwater use, which must include changes in storage, inflows and discharges. The 
relationship between abstraction and aquifer fluxes must be established. These predictions of future impact of 
abstraction are relied upon to set sustainable management criteria, which requires close collaboration with stakeholders 
in the basin (including the regulators or responsible authority). In line with CDWR (2014), the overall aim of the SGS is to 
ensure groundwater is managed to avoid the following six undesirable results: 

Sustainable groundwater use (of groundwater from an aquifer or group of connected aquifers in a basin) is 
defined here as: 
 
Abstraction of a yield that causes or is expected to cause in future, impacts on groundwater level discharge, 
recharge, groundwater quality, saline intrusion, and subsidence, which are considered socially, economically 
and environmentally acceptable. 
Achieving sustainable groundwater use requires that the expected impacts of abstraction are quantified, 
acceptability determined with relevant stakeholders, and associated thresholds for indicators which describe 
expected impacts established.  
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1. Chronic lowering of groundwater levels indicating a significant and unreasonable depletion of supply if 

continued over the planning and implementation horizon.  
2. Depletions of interconnected surface water that have significant and unreasonable adverse impacts on 

beneficial uses of the surface water. 
3. Significant and unreasonable degraded water quality, including the migration of contaminant plumes that impair 

water supplies.  
4. Significant and unreasonable land subsidence that substantially interferes with surface land uses.  
5. Significant and unreasonable seawater intrusion.  
6. Significant and unreasonable reduction of groundwater storage. 

 
Each of the six undesirable results are related to an equivalent sustainability indicator, which are the “six effects caused 
by groundwater conditions occurring throughout the basin that, when [the effects are] significant and unreasonable, 
represent undesirable results” (CDWR, 2017, pg. 26). The six indicators are: 

1. Lowering of groundwater levels 
2. Surface water depletion 
3. Degraded groundwater quality 
4. Land subsidence 
5. Seawater intrusion 
6. Reduction of storage 

 
The framework for the SGS outlines the steps required to establish the expected impacts of abstraction, set thresholds 
for the indicators, establish the necessary monitoring protocol to ensure the thresholds are not exceeded, and implement 
and update the strategy.  
 
The authority mandated as responsible for management of water resources in the area would be the appropriate body 
to implement the strategy, i.e., the Department of Water and Sanitation (or the Catchment Management Agencies) for 
South Africa, or the Department of Water Affairs in Botswana.  
 
Overview of model testing 
Fundamental to achieving sustainable groundwater use, and a central part of the SGS, is establishing the relationship 
between abstraction and aquifer fluxes. Given the complex nature of groundwater and the interdependent responses of 
the system to change, consideration of the long-term implications of groundwater abstraction on these systems is 
virtually impossible without the use of numerical models.  However, numerical models require time and appropriate 
expertise to develop, and have large data requirements to adequately parameterise the physical system. It has therefore 
become appealing to investigate data-driven & machine learning methods that may be able to predict aquifer behaviour 
without deep knowledge of the underlying physical parameters (Sahoo et al, 2017). The research therefore tested the 
viability of machine learning methods to quantify the relationship between abstraction and aquifer fluxes (i.e., generating 
the data for establishing sustainability indictors). In piloting this aspect of the SGS, the research therefore aims to 
determine:  

• Can we use ML methods to forward predict groundwater level in relation to different future stresses (recharge, 
abstraction)?  What is the efficacy in terms of length of prediction and stresses that are not seen in training 
dataset? 

• How can we use ML methods to generate aquifer fluxes? What is the efficacy? 
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To address these questions ML models were developed to first simulate historical groundwater level (as a proxy for 
storage) and aquifer fluxes over time (discharge to surface water) and if possible, investigate demonstrate causal / effect 
links. This requires a minimum a ML model able to recognise pattern between groundwater level, discharge, groundwater 
use, rainfall. Subsequently whether the developed ML model could project discharge forward for a different abstraction 
and rainfall was considered. 
 
Case Study Selection 
Although the Ramotswa TBA became the case study focus for theme 1, various other case study sites were used to 
develop and test the tools developed under the programme, selecting a site that leant itself to this task. A case study 
area was required where groundwater is heavily used such that the relationship between (and impacts of) groundwater 
use and reduced discharge and/or storage are detectable in datasets. Areas with a detectable decline in groundwater 
levels as the basin transitions to a new dynamic equilibrium in response to abstraction were required. The abstraction 
and monitoring record must be sufficient compared to the aquifer response time to demonstrate these impacts. The 
relationship between abstraction and groundwater flow regime or impacts is established over the aquifer or basin scale, 
and so this assignment also implicitly dictated that we consider a regional aquifer – scale assessment (rather than wellfield 
or response to pumping in one borehole). The dolomite terrains of RSA had the best potential to meet these 
requirements. 
 
Data from all dolomite compartments was collated to identify areas with the greatest density of boreholes with 
groundwater level readings; areas where the groundwater level records were the longest and had least data gaps; areas 
where weather stations were in close proximity to groundwater data; and where flow gauge data was available from 
groundwater fed springs in the same or hydrogeologically-connected compartment. Based on these requirements, two 
dolomite compartments were identified as meeting the criteria: 

1. Steenkoppies where a reduction in discharge has been related to groundwater use (Seyler et al, 2016).  
2. Molopo/ Grootfontein which also has been reported as experiencing a reduction in groundwater storage related 

to abstraction (Cobbing, 2018). 
 
Machine Learning Models overview 
Machine learning models do not include the physical principles of groundwater flow or mass conservation. The models 
instead learn the relationships that may exist between the target variable and the other datasets during the training and 
calibration stages and uses these relationships to predict the target variable as accurately as possible. 
The groundwater level at the current point in time is influenced by and related to the groundwater level at previous 
points in time. The potential exists therefore to achieve better predictions of groundwater level by understanding what 
the (predicted or observed) groundwater level was at previous times. Recurrent neural network models (RNN) were 
therefore used for modelling groundwater behaviour rather than Feed Forward Neural Network models (both types of 
artificial neural network models).  Two types of RNN models were tested: the Long Short-term Memory (LSTM) and the 
Neural Network Autoregression (NNAR). 
 
The LSTM was first introduced by Hochreiter and Schmidhuber in 1997 to address the accumulation of error gradients 
during the update process which is a drawback of the RNN, by adding a unique set of memory cells that replace the 
hidden layer neurons of the RNN (Le et al., 2019). LSTMs are capable of avoiding long-term dependence problems that 
occur with the traditional RNN due to the added memory cells. Instead of a single neural network like the standard RNN, 
the LSTM model is capable of filtering information through a gate structure to maintain and update the state of the 
memory cells. Conversely, the NNAR’s previous timestamps are not stored in a hidden state but given as another input 
to the model (Izady et al., 2013). The model iteratively makes predictions. To predict one step, the model simply uses the 
available historical inputs. For forecasting two steps, the model simply uses the one-step prediction as an input, along 
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with the historical data. This process proceeds until all the required predictions are computed. The NNAR does the same 
for the input variables used to help predict the target variable.  
 
Model Setup 
The groundwater level at all boreholes that had adequate data in each case study area were used as prediction targets. 
Input variables included discharge rates, temperature, precipitation and abstraction rates. Precipitation acts as the 
primary source of recharge for the aquifer. Initial model results showed a lack of influence of precipitation on 
groundwater levels hence the rainfall data set was smoothed to improve model performance. Time series decomposition 
was used to de-noise the data and extract the rainfall data trend, which was then used as model input, rather than the 
actual data. Information Gain Ranking was performed to test the correlation between variables and understand what 
would have most influence when carrying out the ML models. In both case studies cross validation was performed, 
models were run 10 times for repeatability, and model results evaluated using R2 and RMSE.  In both cases, 80% of the 
data was used for training, and 20% for testing. 
 
Training and Test Results from the Long Short-term Memory (LSTM) model in Grootfontien 
Generally speaking, the observed and modelled groundwater levels are closely matched, with key features of the 
observed datasets replicated in the modelled data. As would be expected, the training dataset the modelled groundwater 
level matches observed much more closely than the test, because the observed groundwater levels are used in training, 
i.e., groundwater level at the previous time steps largely dictates the predicted output. During test, the model only “sees” 
the modelled groundwater level rather than observed. The LSTM model achieves an average MAE value of 0.25m and a 
maximum of 0.67m. Most of the R2 results are above 0.5. The average R2 value is 0.61. The results demonstrate that the 
model generally performs better the greater number of points in the training dataset, and the more variability it sees 
during the training phase and performs better in test when the variability in the test is similar to that seen in training.  
 
The LSTM model is often unable to capture the minimum and extreme groundwater level peaks whenever they occur in 
a short timeframe. In all cases the predicted groundwater level in test data is lagged behind the observed groundwater 
level. This is common in RNN model results and is related to the fact that the model is “looking” at the model output 
groundwater levels for the previous X number of time steps (X is user defined).  
 
Training and Test Results from the NNAR in Steenkoppies 
Similar to the results from the LSTM, the NNAR model closely replicates the observed groundwater levels, with key 
features of the observed datasets replicated in the modelled data. Again, as would be expected, the modelled 
groundwater level matches observed much more closely in training rather than the test.  The NNAR model achieves an 
average MAE value of 0.61m (achieving a median of 0.26m, skewed by a few boreholes that fit poorly) and a maximum 
of 4.03m. Eight (of 18) of the R2 results are above 0.4, and the median R2 value is 0.2.  In some cases, the standard 
deviation across the ten model runs increases with time due to the accumulated error in model prediction with time, and 
similarly to the LSTM the predicted output of the model is lagged compared to the observed dataset. As per the LSTM, 
the results demonstrate that the model generally performs better the greater number of points and variability in the 
training dataset. In addition, the variability in model performance is also related to how closely the input variables relate 
to the target variable of groundwater level. 
 
Scenario projection results  
The model results show that both the LSTM and the NNAR models are able to replicate groundwater levels relatively well 
for most boreholes for ~5-year periods with ~20 years of training data (i.e., an 80/20 training test split with monthly data 
points). Whilst this is useful for applications such as filling historical groundwater level data gaps, the key aim (and 
requirement for managing sustainable groundwater use) was to test the use of ML methods to forward predict 
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groundwater level in relation to different future stresses (recharge, abstraction).  The scenario test results revealed that 
the models were able to pick up the influence of a certain change in a variable, by generating predicted water level values 
that differed from the base case. For example, halving recharge in both models generates a decline in groundwater levels. 
The LSTM model particularly was able to show greater changes in groundwater levels than the NNAR model.  
 
The scenario test results highlighted, however, several shortcomings in the use of ML models for forward prediction and 
for quantifying aquifer fluxes (quantifying the relationship between groundwater use and aquifer fluxes; this critical part 
of sustainable groundwater management), some of which are applicable perhaps only to these particular case studies 
and some of which would be applicable in any attempt to use ML models. These are summarised as: 
 

 For the ML model to provide the impact on discharge of increasing groundwater use (or changed climate), a 
pattern must be detectable between groundwater use and discharge, which of course requires data. It is rare to 
have a dataset(s) for groundwater discharge from an aquifer. Furthermore, where this data is available to 
establish the models, groundwater discharge is a product of groundwater levels and so wouldn’t be known in a 
future scenario test in which the models are required to predict the impact of changed abstraction or rainfall on 
groundwater levels (storage) and on discharge. Those scenarios demonstrated here used averaged discharge for 
future scenarios which unnaturally controls the resulting groundwater level. Taking discharge out of the 
scenarios as a parameter and essentially driving the prediction based on rainfall and abstraction only would be 
appropriate (and required in settings where there is no discharge dataset) but would reduce the accuracy. A 
work-around this would be to use the pattern between rainfall and groundwater levels to model groundwater 
levels (and predict them into the future), and the pattern between groundwater levels at several boreholes and 
discharge at the spring, to then predict the resulting impact on discharge of reduced rainfall. This approach was 
tested with the NNAR and is feasible, however, accuracy reduces significantly as parameters are excluded in the 
modelling. The benefit of numerical modelling, therefore, is that even when there is no time-series dataset for 
discharge, (and ideally at least a few measurements for calibration), the resulting aquifer discharge can be 
calculated based on modelled groundwater levels.   

 Using ML models to predict groundwater levels may be less feasible in an aquifer setting where there is the 
relationship between groundwater levels and rainfall is weaker or much more muted (i.e., confined aquifer 
settings, or aquifers in arid areas with highly episodic recharge). 

 The main challenge in using ML models in scenario analysis is establishing a relationship between aquifer-scale 
groundwater use and groundwater levels (storage), and thereby groundwater discharge. The research aims 
require assessment of aquifer-scale processes (widespread abstraction causing a gradual and consistent 
lowering of groundwater levels) and therefore cumulative groundwater abstraction across the whole aquifer 
was incorporated in the models. The research aims also dictated that long-term datasets spanning many years 
were used in order to detect the reducing trend in groundwater levels i.e., datasets ideally longer than the 
aquifer response time are required. The Grootfontein case study results do detect the impact of changing 
groundwater use in future scenarios on groundwater levels (which could, in turn, be used to predict future 
discharge for those groundwater levels), however, the Steenkoppies case study was (more understandably) 
unable to detect a strong correlation between use and groundwater levels, and as such changing use in the 
scenario predictions had little impact.  

 
In summary, it is seemingly unlikely that ML models can be used to quantify the relationship between increased 
abstraction and aquifer fluxes. Being able to do so would rely on a relationship being detected between a curve of 
increasing groundwater use (or even sustained use at one abstraction rate) and groundwater levels and aquifer fluxes, 
already detected in the training dataset. ML models are therefore an inapplicable approach for under-utilised aquifers or 
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where abstraction has not yet commenced. It cannot, therefore, be used, for example, for mining assessments at 
greenfield sites where numerical modelling is also relied upon to give the same outputs.  
 
Related to this is the challenge of using point-data (groundwater levels) to provide indications of aquifer-scale processes. 
In cases where there is sufficient spread of boreholes across an aquifer, the groundwater level response at every borehole 
could be predicted for future scenarios, and the predictions interpolated to generate a piezometric surface, and used to 
calculate aquifer storage.  
 
Summary of applicability of ML models for achieving SGS 
The research showed that ML models have application in groundwater for aspects such as assessment of the causal of 
patterns in datasets, predicting the short-term impact of climate variability, and filling data gaps. However, their 
applicability to predicting the impacts of abstraction to inform thresholds of acceptable impact (the core of the SGS) is 
limited. 
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1 INTRODUCTION AND BACKGROUND 
 

1.1 THE BIG DATA ANALYTICS AND TRANSBOUNDARY WATER COLLABORATION FOR SOUTHERN AFRICA 

 
This research project, managed by the Water Research Commission of South Africa, is part of a series of four projects 
under the Big Data Analytics and Transboundary Water Collaboration for Southern Africa, bringing together key 
stakeholders in Water and Big Data sectors.  
 
The Collaboration was first conceptualised in 2014 during the African Leaders Forum in Washington D.C., between United 
States Agency for International Development (USAID) Global Development Lab and IBM Africa Research, which had 
opened its first hub in Nairobi (Kenya) in 2013, followed by the Johannesburg Lab in 2015. Since the early 2000s, the 
regional USAID mission for Southern Africa had been intensifying its regional support for transboundary water systems 
with both the Ramotswa Aquifer Project, involving Botswana and South Africa and the Resilience in the Limpopo River 
Basin Program (currently in its second phase with the Resilient Waters Programme, covering the entire Southern Africa 
region, with a focus on the Limpopo and Okavango River Systems). As part of this process, USAID had also been engaging 
with Southern African Development (SADC): Groundwater Management Institute and the Department of Science and 
Innovation of South Africa to support knowledge and technological advancement in the region. The focus of this multi-
agency collaboration was agreed as Big Data Analytics and Transboundary Water. On 3 April 2017, the partners met with 
a multi-stakeholder regional group in a dynamic “Idea Jam” hosted by the IBM Africa Research Lab in Johannesburg. The 
objective was twofold:  

 to answer the broad question “how best can big data analytics be used to enhance transboundary water 
management”, and  

 to identity the research questions, which would have guided the projects. 
 
Requiring the collaboration of at least five high profile government agencies and private institutions, it took over one 
year to move from the Idea Jam to the launch of the Call for Proposals in August 2018, and the awarding of the four 
research projects in January 2019. 
 

 
Figure 1-1 Collaboration partners and functions 

 
The Collaboration: its partners and objectives 
Currently, the Collaboration has seven partners, with a joint function for USAID Global Development Lab, Water Office, 
and Southern African Mission. The partners each contributed to the development of the research projects based on own 
technical and funding capacity, see Figure 1-1. The total funds provided by the Funding Partners to research directly 
amount to USD $ 500,000 (40%, 40%, 20%). IBM Africa contributed with the provision of the venue in Johannesburg, ad 
hoc, but more importantly, by sponsoring the internship programme to the five candidates from the research projects.  
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The Water Research Commission (WRC) is primarily tasked to oversee the financial and implementation management of 
the four research projects, as well as final reporting. The Sustainable Water Partnership (SWP) was called in by USAID in 
2018 to act as the overarching Programme Coordinator, tasked with providing relation management, overall objective 
achievement, direction and positioning for the Collaboration in the region, and the fostering of a Community of Practice.  
 
The United States Geological Survey (USGS), IBM Research and SWP provided three sets of online training on issues 
pertaining to the focal topics of the Collaboration, which are now available on the Collaboration YouTube channel. 
 
The Collaboration partners defined the objectives for this first phase of action, see Table 1-1. However, the long-term 
vision is to create a Community of Practice for research and innovation on Big Data for Water Security, building on the 
multi-donor environment which has proven successful.  
 
Table 1-1 Collaboration goals and objectives 

Goals Objectives 

Enhance current understanding of shared groundwater 
resources 

Improve transboundary groundwater management and 
collaboration 

Provide big data skills development, capacity building and 
networking opportunities for Southern African 
researchers and their students 

To foster multi-agency collaborative funding 
opportunities 

To promote innovative thinking and application of Big 
Data Analytics to the Transboundary Water sector for 
integrated decision-making 

To plant the seed for a growing community of pioneers in 
the use of Big Data Analytics for the study and 
management of Transboundary Water Aquifers 

 
Research projects: funding and training 
The four projects were awarded between December 2018 and January 2019, and they all focus on a secondary river basin 
in the region: the Ramotswa, part of the Limpopo River Basin, spanning Botswana and South Africa. All the lead 
institutions of the project teams have partnered, see Figure 1-2, with Botswana government and private institutions, as 
well as other leaders in previous water programmes in the area, such as UN-IGRAC1 (partner of Team 1) and IWMI2, 
implementers of the Ramotswa 2 USAID Project.  
 
Despite working independently to address own project topics, the four research teams have progressively worked 
together to provide better integration for their outcomes. This process was led by the SWP in respect of providing a 
communication forum for the team leaders but was enhanced by the Internship Programme. The IBM mentors created 
a dedicated team and engaged the interns as individuals, as well as a group to help each other resolve new questions in 
coding and Machine Learning. 
 

 
1 International Groundwater Resources Assessment Centre of the United Nations 
2 International Water Management Institute 
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Figure 1-2 Title of the four thematic areas and projects 

The future prospects 
As the current phase is coming to an end with the closing of the four research projects, the Collaboration partners are 
already identifying new opportunities to build on the lessons learnt and address the gaps recognised in this preliminary 
work, enhance the partnership to include national and regional government stakeholders, as well as new funding 
partners.  
 
The focus of the Collaboration will remain the nexus between Big Data Analytics and (Transboundary) Water Security, 
recognising the inter-relatedness of successful water management in both national and shared aquifers to both human 
development and environmental goals. 
 
 

1.2 PROJECT MOTIVATION 

Around 70% of the SADC region is rural in nature, and more than 60% of communities in the region rely on groundwater 
(GWC, 2001). In addition to providing for domestic needs, groundwater, as a local resource, has the potential to catalyse 
further development by providing for irrigation schemes, and providing for industrial use. Altchenko and Villholth (2013) 
have identified 29 regional scale aquifers that extend across, and are therefore shared across, international borders 
(Transboundary aquifers; TBAs). It has been noted that “proper development and management systems need to be in 
place in order to jointly manage and harness this resource [TBAs] in an economically, environmentally and socially 
sustainable manner” (GWC, 2001). 
 
But there are significant challenges to realising the potential for groundwater use. In many rural areas the capacity of the 
relevant local authorities is inadequate (Cobbing et al, 2015). The necessary finance is often absent for the maintenance 
of groundwater infrastructure. Rural groundwater supply schemes (often developed through funding sources external to 
the local authority i.e., international development or emergency funds) are left to fall into disrepair, and the scheme fails 
(for example schemes developed under the SADC Sustainable Groundwater and Drought Management Project in the 
Limpopo Basin TBA; SADC-GMI, 2017).  Cooperation is required between users and between relevant authorities. These 
requirements are particularly challenging in rural areas that cross international boundaries, where limited datasets are 
in different formats, and where activities in one country may impact on groundwater resources in another. TBAs are at 
risk of over-exploitation related to various shortcomings including knowledge gaps on the situation in the neighbouring 
country, and lack of appropriate organisational structures.  

T1: Consolidation of data and application of big data tools to enhance national and transboundary data sets in 
Southern Africa that support decision-making for security of water resources.

• Umvoto Africa, University of Botswana, other global
T2: Consolidation of data and application of big data tools to enhance national and transboundary data sets in 
Southern Africa that support decision-making for security of water resources.

• Witwatersrand University, Geological Services of Botswana, DWS

T3: Localizing transboundary data sets in Southern African: A case study approach

• University of the Western Cape, CSIR, L2K2 Consultants

T4: Groundwater secure transboundary systems

• Delta-H Groundwater Systems Modelling and Institute for Groundwater Studies
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Responding to these challenges for TBAs requires a variety of interventions. Some research has focused on harvesting 
data from various international sources, and making this data available internationally (for example, the SADC 
Groundwater Information Portal (SADC-GIP)3, and the Ramotswa Information Management System, which is Phase 1 of 
the Ramotswa Project4). Theme 1, 2, and 3 of this proposal address the need to merge data from disparate databases or 
structures, and researching new ways of generating, analysing and visualising groundwater data.  
 
But access to data is only the start of sustainable groundwater management. Fundamental to the management of any 
aquifer is knowledge of the groundwater flow regime, and knowledge of the long-term change in groundwater levels, 
recharge, and discharge to surface water when it is pumped.  Knowledge of contamination threats and potential 
responses is also key. This kind of hydrogeological assessment forms the foundation for the determination of limits of 
acceptable impact and provides a benchmark against which to compare future monitoring datasets and take groundwater 
management decisions.  
 
To establish groundwater-secure aquifer systems (and TBAs) requires that this kind of baseline hydrogeological 
assessment is in place, is routinely updated, and that it is used to inform groundwater management decisions. It is this 
element of sustainable groundwater management that this project intends to address, through i) the development of a 
best practice approach for a sustainable groundwater use and ii) the testing of new tools and approaches feasible from 
big data for sustainable groundwater use.  
 
Whilst there are many standards and best practice guidelines for groundwater development at scheme level (for example 
GWC, 2001), there are very few for regional aquifer resources management. “Groundwater Sustainability Plans” (GSPs) 
are generated for major aquifers in California under the new Sustainable Groundwater Management Act, (California 
State, 2014), and have a relatively standard content and approach. The national modelling project in the UK similarly 
provides groundwater yield assessments for major aquifers in the UK, which are updated and inform management. 
However, the SADC counties do not have the same: there is no (routinely updated) aquifer scale groundwater resources 
assessment, which informs management plan and water use strategy, in place for most major aquifers in the SADC 
countries, nor the TBAs.  
 

1.3 RESEARCH AIMS, OBJECTIVES, AND OUTCOMES 

Whilst the original terms of references and proposal suggested that a sustainable groundwater strategy be developed 
and implemented for one prioritised TBA (i.e., completing an assessment of groundwater availability, groundwater 
quantity and quality protection, and developing a water supply strategy), this approach was amended during the 
inception phase of the study with the input from the reference group. It was deemed more important to trial new 
approaches and develop new tools than carry out routine hydrogeology. This project therefore aimed to: 

 develop a sustainable groundwater strategy (SGS), reflecting a best practice approach for achieving sustainable 
groundwater use (as defined in Box  1-1) 

 pilot “big data” or new approaches for meeting parts of the sustainable groundwater strategy, in a case study 
site 

 
The SGS that has been developed is essentially a list of actions necessary for achieving sustainable groundwater use and 
would be applied to an aquifer or group of aquifers (a groundwater basin). It is recommended that the approach be 
implemented particularly in heavily used aquifers, in aquifers with sensitive receptors, and the approach would support 
improved groundwater management in TBAs. The strategy is explained in full in this report. The actions within the 

 
3 https://apps.geodan.nl/igrac/ggis-viewer/viewer/sadcgip/public/default  
4 http://ramotswa.iwmi.org/home  
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strategy can be met using traditional hydrogeological approaches. The research under this collaboration tested how and 
where big data analytics or new approaches can support improved groundwater management, and hence each tool 
developed by each project in the collaboration represents a new approach to meet part of the strategy.  
 
The full sustainable groundwater strategy was not implemented in its entirety in one test case, due to the scope and 
structure for these projects and for the SGS to be successful it needs to be implemented by the responsible authority for 
that basin. The authority mandated as responsible for management of water resources in the area would be the 
appropriate body to implement the strategy, i.e., the Department of Water and Sanitation (or the Catchment 
Management Agencies) for South Africa, or the Department of Water Affairs in Botswana. Whilst the Ramotswa TBA 
became the focus for theme 1 (section 1.5), various other case study sites were used to develop and test the tools 
developed under the programme, selecting a site that leant themselves to this task.  
 
The overall outcome of the programme is, therefore, a set of new approaches (tools) tested in various case studies, that 
all support improved sustainable groundwater management and therefore represent tools to meet actions required in 
the sustainable groundwater strategy. The collaboration did not develop one single tool for achieving improved 
groundwater management because there is no single tool conceivable that could enable a decision maker to achieve 
sustainable groundwater use. The decisions required to achieve sustainable groundwater use cannot be automated; they 
need to be based on hydrogeological information therein based on hydrogeological analysis of data and model results. 
Hydrogeologists are required to do the necessary analysis and provide information to decision-makers.  This process is 
illustrated by the SGS and described in this report. 
 

 
Box  1-1 Definition of sustainable groundwater use 

1.4 PROJECT TEAM 

The project was led by Helen Seyler of Delta-H Groundwater Systems, who conceptualised the project, managed and 
directed the machine learning modelling from a hydrogeological perspective, and contributed to the final report. Project 
researchers Kirsty Gibson and Yolanda Kanyama completed the modelling for the project, which has contributed to the 
project and also to their Masters’ theses. The students were identified during project inception phase and due to the 
inter-disciplinary nature of the project, students from different backgrounds were selected: Kirsty Gibson is a 
hydrogeologist whose Masters’ thesis is registered with the University of the Free State at the institute of Groundwater 
Studies; and Yolanda Kanyama is a computer scientist whose Masters’ thesis is registered with the University of 
Witwatersrand at the Computer Sciences Institute. 
 
Prof Kai Witthüser of the University of the Free State and of Delta-h Water Systems Modelling contributed as a project 
advisor and student supervisor to Kirsty Gibson. Prof Ritesh Ajoodha of the University of the Witwatersrand is the student 

Sustainable groundwater use (of groundwater from an aquifer or group of connected aquifers in a basin) 
is defined here as: 
 
Abstraction of a yield that causes or is expected to cause in future, impacts on groundwater level discharge, 
recharge, groundwater quality, saline intrusion, and subsidence, which are considered socially, 
economically and environmentally acceptable. 
Achieving sustainable groundwater use requires that the expected impacts of abstraction are quantified, 
acceptability determined with relevant stakeholders, and used to set limits on these impact areas.  The 
limits become thresholds for each impact area which becomes an indicator. 
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supervisor to Yolanda Kanyama, and also contributed to the overall project by reviewing and advising on machine learning 
modelling carried out by Kirsty Gibson. 
 
As part of the collaboration, internship-style training was provided by IBM for the two project researchers. The IBM 
supervisors contributed to brainstorming solutions to model challenges encountered along the way.  Ndivhuwo Makondo 
provided technical support with the model codes. 
 

1.5 CASE STUDY SITE SELECTION 

During the initial reference group meeting for the programme, it was proposed that all projects apply the same case 
study, due to the overlap in aims, the intention for data sharing between projects, and the intention for the projects to 
integrate the tools generated towards one overall aim. The Ramotswa TBA was selected as this case study, because the 
Ramotswa TBA had been identified during proposal stage by Theme 1 as the most appropriate TBA for theme 1 to achieve 
their aims.  The Ramotswa TBA is described in detail in the theme 1 report. 
 
However, during mid to end 2019 delays were experienced by theme 1 in the collection of data from Ramotswa and a 
preliminary analysis of data availability suggested a paucity of time-series groundwater level data. In order to avoid delays 
for Theme 4, and in order to ensure sufficient data was available for the application of machine learning models (selected 
as the big data approach to pilot, section 3.2), this team considered the dolomite terrains across RSA for case study sites, 
as agreed with the reference group.  
 
Where and how actions required in the SGS can be met by new approaches is outlined in section 3.2. The viability of using 
machine learning (ML) models for quantifying the relationship between abstraction and impacts on the groundwater flow 
regime as part of a groundwater availability assessment was selected for piloting within this study (our focus area, section 
3.2). A case study area was required where groundwater is heavily used such that the relationship between (or impacts 
of) groundwater use on reduced discharge and/or storage are detectable in datasets. Areas with a detectable decline in 
groundwater levels as the basin transitions to a new dynamic equilibrium in response to abstraction were required. The 
abstraction and monitoring record must be sufficient compared to the aquifer response time to demonstrate these 
impacts. The relationship between abstraction and groundwater flow regime or impacts is established over the aquifer 
or basin scale, and so this assignment also implicitly dictated that we consider a regional aquifer – scale assessment 
(rather than wellfield or response to pumping in one borehole). The dolomite terrains of RSA had the best potential to 
meet these requirements. 
 
Among South Africa's most important aquifers are the dolomites of the North West and Gauteng Province, which are 
found in the northern part of the country (Figure 1-3). The dolomite aquifers are highly productive aquifers containing 
good quality water that supplies significant domestic and agricultural water needs particularly in the North West. Several 
towns and settlements such as, Itsoseng, Lichtenburg, Mahikeng largely rely on groundwater from the dolomites as their 
main source of water. The dolomite aquifers have been naturally compartmentalised by volcanic rocks. These rocks 
intrude upwards through the dolomite sequence in long sheets referred to as dykes. Dykes are less permeable than 
dolomite hence they act as a barrier to groundwater flow across them. Figure 1-3 shows the major compartments that 
the dolomite terrains have been subdivided into.   
 
Data from all dolomite compartments was collated to identify areas: with the greatest density of boreholes with 
groundwater level readings; where the groundwater level records were the longest and had least data gaps; where 
weather stations were in close proximity to groundwater data; and where flow gauge data was available from 
groundwater fed springs in the same or hydrogeologically-connected compartment. Based on these requirements, two 
dolomite compartments were identified as meeting the criteria: 
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1. Steenkoppies where a reduction in discharge has been related to groundwater use (Seyler et al, 2016).  
2. Molopo/ Grootfontein which also has been reported as experiencing a reduction in groundwater storage related 

to abstraction (Cobbing, 2018). 
 
Delineation of these case study area boundaries is based on the groundwater management areas (GMAs) delineated by 
DWA (2009), based on the compartment boundaries defined therein. This study seeks to utilise the best available dataset 
to test the viability of a new approach and does not seek to provide detailed hydrogeological analysis of the case study 
sites. The references cited should be referred to in order to provide more detailed hydrogeological information on the 
Molopo/ Grootfontein and Steenkoppies GMAs. 
 

 
Figure 1-3 Map showing Dolomite GMAs of South Africa with Molopo/ Grootfontein/ Molopo GMA and 
Steenkoppies GMA highlighted (compartment boundaries from DWA 2009) 
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2 SUSTAINABLE GROUNDWATER STRATEGY  
 

2.1 INTRODUCTION TO SUSTAINABLE GROUNDWATER USE 

Supporting groundwater security in TBAs is the focus of the project and what the sustainable groundwater strategy (SGS) 
needs to address. Whist the theory of groundwater flow has not changed since the original work of by Theis (Theis, 1940, 
cited in Bennett et al, 1988), the concept of sustainable groundwater use has been more explicitly defined in recent years.  
 
There are unavoidable consequences to abstracting groundwater, related to the source of the water abstracted. Aquifers, 
under natural conditions, are in a state of dynamic equilibrium. When pumping is initiated, abstracted water is met from 
aquifer storage and water levels decline (Bredehoeft and Durbin, 2009, Sophocleous, 2000; Alley and Leake, 2004). As 
the system reaches a new dynamic equilibrium the water level decline diminishes and abstracted water is met by a 
reduction in natural discharge, and potentially an increase in recharge (Bredehoeft et al, 1982, Bredehoeft, 2002, Devlin 
& Sophocleous, 2005). The time it takes the aquifer to reach this new dynamic equilibrium is termed the response time 
(Sophocleous, 2000; Alley and Leake, 2004). Water withdrawn artificially from an aquifer is therefore derived from a 
decrease in storage in the aquifer, a reduction in the previous discharge from the aquifer, an increase in the recharge, or 
a combination of these changes (Theis, 1940, cited in Bennett et al, 1988). The sum of the increase in recharge and 
decrease in discharge brought about by pumping was referred to as capture by Lohman (1972). It follows that an 
assessment of the sustainability of groundwater abstraction, or quantification of a sustainable yield for abstraction, would 
quantify what these changes in the flow regime related to that yield are (or will be in future, and when they will be 
realised), and determine whether the changes and their associated impacts are considered socially, economically and 
environmentally acceptable by the relevant stakeholders which needs to include the responsible authority, groundwater 
users, and representation of the environment . If the estimated changes are acceptable, the pumping (or total yield to 
be abstracted for the predicted changes) can be considered sustainable groundwater use (Sophocleous, 2000, Alley and 
Leake, 2004). Seyler et al (2016) label this approach as the capture principle approach to sustainable groundwater use.  
If the abstraction rate cannot be met by capture, because it exceeds the pre-abstraction discharge r plus any potential 
addition from enhanced recharge, groundwater storage continues to be the source of abstracted water. A new dynamic 
equilibrium is not achieved, and groundwater levels continue to decline. This is referred to as groundwater mining, and 
can be considered socially, economically and environmentally acceptable in specific cases (such as the Great Man-made 
River project in Libya, (Hiscock, 2005)). 
 
Understanding these physical processes is fundamental to understanding what we are trying to achieve in testing the 
viability of using machine learning (ML) models for quantifying the relationship between abstraction and impacts on 
the groundwater flow regime as part of a groundwater availability assessment. A brief illustration of these physical 
processes is given in Box  2-1, and an illustration quantifying abstraction impacts on the flow regime is shown in Box  
2-2.  The references cited above should be examined to for fuller illustration of these processes.  
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Box  2-1  Introduction to Sustainable Groundwater Use – illustration of physical process 

 
 
  

In their natural state, assuming the climate is stable, aquifers are in a state of dynamic equilibrium meaning that wet 
and dry years balance in the long term, and groundwater levels are relatively stable. Pumping disrupts this 
equilibrium.  The graph below shows data from the West Coast District Municipality wellfield at Langebaan Road, on 
the West Coast (Woodford, 2005). The graph shows the groundwater level from two boreholes at the wellfield in the 
blue and green series, which are labelled “lower” because they are pumped from the lower of two aquifers. These 
boreholes are pumped at the combined rate shown (“LRA Wellfield”). Abstraction from this wellfield commenced in 
November 1999, prior to which there was minimal abstraction from this aquifer in this vicinity. The total abstraction 
rate varies slightly and in months with much less abstraction (i.e. October and November 2000, and May and June 
2002) the groundwater level recovers. 
 

“Initially all abstracted water is met from aquifer storage and water levels decline. As the system reaches a 
new dynamic equilibrium the water level decline diminishes and abstracted water is met by a reduction in 
natural discharge, and potentially an increase in recharge.” 
 

Short term variability aside, the groundwater levels in the graph illustrate this physical process perfectly: initially the 
groundwater level decline is rapid; dropping around 8m in the first year. The abstracted water is being sourced from 
stored groundwater around the boreholes. Subsequently the rate of change in groundwater level slows significantly 
and in the subsequent 3 years the change is less than 2m. The aquifer system is approaching a new dynamic 
equilibrium in response to abstraction: a similar and relatively constant yield is being abstracted yet groundwater 
levels no longer significantly decline, because the yield is being sourced (or balanced) from sources other than storage. 
Discharge has been reduced and/ or recharge increased. In this case the response time is somewhat over 4 years.  
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Box  2-2  Introduction to Sustainable Groundwater Use – quantifying impacts on the flow regime 

 

Both the expected impact on groundwater levels (at some stage potentially in future, after dynamic equilibrium is 
reached) and the expected impact on the flow regime need to be quantified in order to explore what impacts can be 
considered acceptable.  The groundwater level gradient drives the rate of groundwater flow and discharge, however 
whilst groundwater levels are straightforward to measure, the corresponding flow and discharge rate is less so.  At 
the aquifer or basin scale, quantifying impacts on the flow regime over time as abstraction progresses, and at the 
new dynamic equilibrium, and estimating the future groundwater level under dynamic equilibrium, relies on 
numerical models.  Numerical models are calibrated generally against observed groundwater levels, and the model 
provides the resulting aquifer fluxes for the modelled groundwater level distribution. Models are generally developed 
that replicate the current situation (base case), and the response to other hypothetical pumping regimes is estimated. 
In a time-varying or transient simulation the numerical model solves the groundwater flow equation (thus providing 
groundwater level and aquifer fluxes) for each time step, and a steady-state model represents the basin’s response 
at a new dynamic equilibrium.  
 
The first output required from numerical models to enable stakeholders to take a decision over acceptability of impact 
of abstraction, is to run steady state models with increasing abstraction rates, and plot the resulting aquifer fluxes 
(recommended by Henriksen et al, 2008, and Seyler et al, 2016). An example of this graph is given below which shows 
fluxes out of the aquifer as negative and influxes as positive. The graph illustrates hypothetical abstraction scenarios 
from a model developed for the West Coast District Municipality wellfield at Langebaan Road, on the West Coast 
(Seyler et al, 2016). As abstraction increases, the discharge from the aquifer to the Berg River, Saldanha Bay and the 
ocean decreases.  Whilst overall the river continues to gain from groundwater i.e. negative, abstraction greater than 
6 million m3/a causes the Berg River to become a losing river over a short reach (increasing recharge by causing 
indirect recharge). In this case study, indirect recharge would be an unacceptable impact of abstraction, since the 
Lower Berg River has poorer water quality than groundwater in the area. The second output required is plot of each 
flux on the y-axis with time on x axis from time-varying simulations, and determine the response time based on when 
changes in fluxes minimise.  
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2.2 EXISTING APPLICABLE STRATEGIES OR APPROACHES   

The capture principle approach to sustainable groundwater use is enshrined within the Groundwater Sustainability Plans 
(GSPs) required by the California Department of Water Resources (CDWR, 2014). The development of GSPs became a 
legal requirement for prioritised basins in California State related to the passing of the Sustainable Groundwater 
Management Act (SGMA) in 2014. The GSPs require that the impacts of abstraction are estimated, and acceptable limits 
on impact set by relevant stakeholders, dictating the available groundwater yield. Furthermore, the GSPs require that 
sustainability indicators are established, with thresholds related to the acceptable level of impact, in order to monitor 
the responses to abstraction against expected and acceptable impact.   
 
This approach is not however mainstreamed in groundwater resources assessments in SADC countries. The fact that the 
changes in flow regime are hard to monitor in real time and that the estimation of future impact carries uncertainties, 
forcing the need for adaptive management, has led to the application of over-simplified static water balance type 
approaches that relate groundwater availability directly to some portion of recharge, and consider groundwater use to 
be sustainable if it is less than recharge (Seyler et al, 2016). Water level declines (alone) are also often mis-interpreted as 
indicative of unsustainable groundwater use, without quantification of the groundwater decline that will occur as the 
aquifer system transitions to a new dynamic equilibrium.  Seyler et al (2016) aimed to promote the capture principle 
approach to sustainable groundwater use with a focus on implementation in South Africa and proposed a decision 
framework (flow chart with set of required actions) for implementing sustainable groundwater use.  The decision 
framework for sustainable groundwater use and the guidance document for the GSPs outlining the standard approach 
(CDWR, 2016a) were developed at the same time and are aligned technically; both implement the capture principle 
approach to sustainable groundwater use and contain sustainability indicators which overlap. 
 
At the core of the decision framework is the upfront estimation of the future impact of abstraction on the flow regime 
(source of abstracted water), taking a socio-economic-environmental decision over acceptability, and monitoring to verify 
and update the estimation of future impact through the use of a set of sustainability indicators. The sustainability 
indicators derived by Seyler et al (2016) include changes in discharge, recharge, and aquifer storage and are intended to 
track the progress of the aquifer towards the new dynamic equilibrium under abstraction, in order to update the initial 
estimation of these conditions.  The SGMA (and associated GSPs) incorporates a broader definition of sustainable 
groundwater use by explicitly including other impacts of abstraction including water quality, subsidence, and saline 
intrusion.  These two resources (Seyler et al (2016) and the SGMA) form the basis for the SGS. 
 

2.3 FRAMEWORK FOR A SUSTAINABLE GROUNDWATER STRATEGY  

The proposed framework for a SGS is outlined in Table 2-1 and summarised in Figure 2-1, and is based closely on the 
steps listed in the California Code of Regulations for the Groundwater sustainability plans (CDWR, 2014), and the steps 
in the Decision Framework of Seyler et al, 2016.  
 
SGS section 1, and subsections 2.1 to 2.4 represent relatively routine requirements. A groundwater availability 
assessment (termed groundwater balance in the GSPs and Californian regulations) is completed under SGS subsection 
2.5, the requirements for which are in line with the capture principle approach to sustainable groundwater management. 
Subsection 2.5 specifically requires quantification of current and annual future groundwater balance or flows in the basin, 
which must include: 

i) Current and predicted future groundwater inflows and outflows and resulting groundwater storage. Inflows 
to be considered include subsurface groundwater inflow and infiltration of precipitation, applied water, and 
surface water systems, such as lakes, streams, rivers, canals, springs and conveyance systems. Outflows 
from the groundwater system to be quantified include evapotranspiration, groundwater extraction, and 
groundwater discharge to surface water. Future groundwater inflows and outflows are to be estimated for 
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potential changes in abstraction regimes across the basin and known changes in surface water abstraction 
and/ or recharge. The potential for managed aquifer recharge should be incorporated in the future aquifer 
fluxes. It is recommended that the relationship between abstraction and groundwater fluxes is presented 
in a graph as illustrated in Box 2-2. 

ii) Estimate of the resulting groundwater conditions (inflows, outflows, groundwater levels) when the planned 
or proposed yield is abstracted.  

iii) Estimate of the response time. 
 
The outputs of the groundwater availability assessment (specifically the predicted future impacts of abstraction) are 
relied upon to set sustainable management criteria in SGS section 3, which requires close collaboration with stakeholders 
in the basin (including the regulators or responsible authority). In line with CDWR (2014), the overall aim of the activities 
in SGS section 3 is to ensure groundwater is managed to avoid the following six undesirable results: 

1. Chronic lowering of groundwater levels indicating a significant and unreasonable depletion of supply if 
continued over the planning and implementation horizon.  

2. Depletions of interconnected surface water that have significant and unreasonable adverse impacts on 
beneficial uses of the surface water. 

3. Significant and unreasonable degraded water quality, including the migration of contaminant plumes that impair 
water supplies.  

4. Significant and unreasonable land subsidence that substantially interferes with surface land uses.  
5. Significant and unreasonable seawater intrusion.  
6. Significant and unreasonable reduction of groundwater storage.  

 
Each of the six undesirable results are related to an equivalent sustainability indicator, which are the “six effects caused 
by groundwater conditions occurring throughout the basin that, when [the effects are] significant and unreasonable, 
represent undesirable results” (CDWR, 2017, pg. 26). For example, the sustainability indicator for the first undesirable 
result, chronic lowering of groundwater level, is lowering groundwater levels. The six indicators are below and shown in 
(Figure 2-2): 
 

1. Lowering of groundwater levels 
2. Surface water depletion 
3. Degraded groundwater quality 
4. Land subsidence 
5. Seawater intrusion 
6. Reduction of storage 

 
As a first step (SGS sub-section 3.1), a list of goals must be set for the basin, in the form of statements detailing the 
acceptable level impact. The sustainability indicators that are relevant to the basin are selected, and statements 
developed for each. Once acceptable impacts are agreed to by stakeholders, within SGS subsection 3.2, the equivalent 
sustainable aquifer yield can be established (using the outputs from SGS subsection 2.5 that detail the impact of various 
levels of abstraction). Actual measurement of abstraction yields (and comparison of this to the established sustainable 
aquifer yield) is not included as a sustainability indicator (in line with both Seyler et al 2016 and CDWR 2014). The 
sustainable aquifer yield cannot be considered a fixed value as the factors influencing it may change over time, and the 
focus of the SGS is on the impact of abstracting the planned abstraction, rather than the yield itself: 

“Basin-wide pumping within the sustainable yield estimate is neither a measure of, nor proof of, sustainability. 
Sustainability under SGMA is only demonstrated by avoiding undesirable results for the six sustainability 
indicators” (CDWR, 2017, pg. 32). 
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Within SGS subsection 3.2, the recommended uses for groundwater are provided by matching groundwater availability 
with water requirements. Where groundwater is not being fully utilised, recommended uses of groundwater can be 
provided including decentralised use, centralised use for domestic purposes, industrial and agricultural uses. Where 
groundwater use already exceeds the sustainable aquifer yield, the associated thresholds will either be already breached 
or be breached in future (related to the response time), the SGS may inform the need for re-allocation of authorisations 
to abstract. 
 
For each sustainability indicator, a measurable objective is set in SGS subsection 3.3, for example an objective for 
indicator 1 would be “maintain groundwater level above a specified level”.  A minimum threshold is established for this 
objective in SGS subsection 3.4, as illustrated in Figure 2-2, and Figure 2-3 using examples from CDWR (2017).  
 
For protection groundwater quantity, the expected impacts when abstracting the sustainable aquifer yield is what 
informs the thresholds set for indicators on groundwater level, surface water depletion; an approach that therefore 
reflects pro-active protection of groundwater availability. Groundwater quality is a prescribed indicator and will therefore 
have thresholds set for concentration of relevant parameters. The thresholds would be selected based on an acceptable 
upper limit for variability from natural background, in order to protect against contamination of groundwater resources. 
There is a need in addition to establish a proactive approach to the protection of the quality of groundwater sources; 
through identification of threats (completed within section 2) and the delineation of source protection zones (SPZ), and 
the control of activities within the SPZs (for a summary on the definition of SPZ, and the approach to their delineation 
see Seyler et al, 2019).  There is overlap in responsibilities between the authority who would implement the SGS (likely 
to be national government or catchment management agency), concerned with overall resource protection, and local 
government concerned with supplying clean water from boreholes. Delineation of SPZs could be the responsibility of 
either national government or local government, but the land use planning that the SPZ intends to inform is generally the 
responsibility of local gov.  It therefore makes sense that local government also delineate SPZs at domestic supply 
boreholes; however, the SGS should at least support this process (in SGS subsection 3.5).  
 
In subsection 3.6 a monitoring network must be established, capable of collecting sufficient data to demonstrate the 
groundwater condition and whether sustainability indicators and their thresholds are being met thus evaluating SGS 
implementation and demonstrate progress towards achieving goals. The reasons for site selections should be given, along 
with monitoring protocols including methods, reporting requirements and standards. 
 
In SGS section 4 any additional or special measures that may be relevant and required for the area are handled, such as 
measures to manage saline intrusion, or remediation requirements, in addition to implementing the sustainability 
indicators and their thresholds.  
 
Prior to implementation of the SGS there may be specific projects that need to be launched in order to support achieving 
the sustainability goals; for example, the establishment of a monitoring network and drilling of boreholes. SGS section 5 
allows for these projects to be planned, along with their costs, timelines and legislative requirements.  As part of 
launching the SGS, implementation measures including how the SGS is updated, and reported on, are provided as part of 
SGS section 6. 
 

2.4 APPLICABILITY, IMPLEMENTATION, AND ALIGNMENT WITH EXISTING LEGISLATION 

Who is responsible to implement the SGS? 
Development of the SGS would fall with the authority responsible for management and allocation of groundwater 
resources, which is generally national government (i.e., the Department of Water and Sanitation for RSA, or the 
Department of Water Affairs in Botswana). In many cases this responsibility is delegated to local catchment management 
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authorities (as is the case in RSA, similarly to the basin management units in California). In cases where there is significant 
use of groundwater for public water supply, and especially where this represents the major use of groundwater in the 
basin, there is overlap of responsibilities with local government, who would need to understand the impact of their 
planned abstraction (in order to receive a licence from the responsible authority and establish SPZs).  
 
Is the approach applicable to TBAs? 
The GSPs are required for all basins in California, with their development and implementation prioritised first in basins 
deemed as high and medium priority, based on the groundwater condition in those areas. Specifically, if long-term 
average abstraction exceeds the long-term average supply of water to the basin over a 10-year period, including 
enhanced recharge, such that abstraction is not maintainable (not met by a new dynamic equilibrium, section 2.1), then 
the basin is deemed to be in conditions of ‘overdraft’, and it is considered high- priority.  The Decision Framework 
developed by Seyler et al 2016 was recommended therein for heavily used basins (defined as basins where groundwater 
use is greater than 65% of pre-abstraction recharge over the same area). 
 
The need to carefully manage abstraction impacts with thresholds and indicators is arguably more necessary where there 
are significant impacts and therefore more likely where groundwater use is high compared to groundwater water supply. 
However, even where use is relatively low, unacceptable impacts may occur if abstraction occurs close to sensitive 
receptors (since distance to receptor and hydraulic diffusivity dictate the propagation of impact of abstraction, not 
abstraction yield).  
 
The SGS represents an overarching approach applicable to any groundwater basin.  Not establishing the relationship 
between abstraction yield and impact upfront prior to abstraction (i.e., not implementing a groundwater availability 
assessment as outlined in subsection 2.5) is equivalent to allowing an undefined future dynamic equilibrium to establish 
(Seyler et al 2016). Planned increases in groundwater abstraction often cause stakeholder concern over potential impact 
and can lead to misunderstanding over groundwater level declines and what these mean. The SGS approach enables 
expected impacts to be quantified up-front, prior to abstraction commencing, such that acceptable impacts can be pro-
actively managed towards. This increases confidence, trust and buy-in from stakeholders, and the approach is considered 
especially necessary in TBAs where a groundwater basin is shared across international borders. Applying the SGS would 
generate the technical information on which to base discussions and necessary agreements over abstraction in one 
country which may cause impacts in another. The SGS therefore represents the idealised best-practice approach to 
sustainable groundwater management that these projects are recommending is implemented for TBAs. 
 
How can the SGS be implemented? 
The framework for a sustainable groundwater strategy presented in section 2.3 does not have the same level of detail as 
the literature for California, which includes legislation outlining the necessity for sustainable groundwater management 
and outlining that this be achieving through the development of GSPs (SGMA, CDWR 2014). The legislation controls the 
content of the GSPs, and additional guidance and best practice approach documents provide details to each of the GSP 
steps in legislation. It is acknowledged that full implementation of the SGS would require legislation to be amended, and 
more detailed guidance documents.  Therefore, similarly to California, whilst the actions in the SGS are necessary in TBAs, 
they are unlikely to be fulfilled in their entirety until legislation is amended; 
 

“SGMA requires actions that have been necessary for many years or, in some cases, decades, but have not been 
politically feasible without a state mandate.” (CDWR 2017) 

 
The SGS does not address the governance aspects required for achieving sustainable groundwater management in TBAs 
but focuses on the technical steps required for supporting sustainable groundwater management.  The SGS was 
developed at the start of the project process and is presented as the point of integration for the 4 project themes under 
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the collaboration. As all themes have sustainable groundwater management as the ultimate aim of any new tools or 
approaches being developed or tested, the outputs of each theme therefore meet part of the SGS.  
 
Does the SGS align to existing plans / legislation?  
There are some similarities between the indicators, measurable objectives and thresholds required in SGS, and the 
requirements of the Water Resources Classification System (WRCS) prescribed by the National Water Act in South Africa, 
and currently under development in Kenya. The WRCS also requires that thresholds are set to protect groundwater 
quality and groundwater availability, through the setting of Resource Quality Objectives (RQOs). However, most studies 
that have been completed have implemented a static groundwater balance type approach and dictated a groundwater 
yield as part of the RQOs, rather than focussing on undesirable consequences predicted based on the abstraction of an 
acceptable yield (reduced storage or reduced discharge). It is also a challenge to incorporate all the necessary elements 
of a sustainable groundwater management plan within the prescribed constraints of a WRCS study, where the 
methodology is based on surface water resources (Riemann, 2013; DWS, 2017). Nevertheless, as there is overlap at least 
between the RQOs that may be set for groundwater quality limits and the indicators required as part of the SGS, these 
should be in alignment.  
 
Wherever the SGS is developed it should be used to feed information to the other processes that are mandated in those 
countries, for example there is clear overlap with any existing allocation planning processes that exist. 
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Table 2-1 Outline of SGS showing required sections and required content 

SGS Section SGS Sub-sections Details / required content 
1. Water 
requirements 

1.1 Water requirements Current and future water requirements of the groundwater basin and surrounding region (areas the 
basin may supply currently or in future), including current users and & potential future users, 
including domestic, agricultural and industrial requirements, and including seasonal patterns and 
peak demands. Required as basis to provide recommended uses of groundwater. 

1.2 Current water supply sources and yields of 
other (non-groundwater) sources. 

Description of (all) available water resources to meet requirements and their yields. Required in 
order to understand the potential current and future demand from groundwater. 

2. SGS area and 
aquifer setting 

2.1 Description of SGS area Describe area covered by SWS including locally relevant jurisdiction aspects, existing groundwater 
monitoring / management programmes and land use.  

2.2 Hydrogeological conceptual model Graphical and narrative description of the groundwater flow regime (sources, sinks, flow direction) 
in the basin. To include information on and analysis of; topography, geology, soils, recharge areas 
and rates, groundwater level information and flow directions, discharge areas and rates, surface 
water bodies, identification of interconnected surface water systems and groundwater dependent 
ecosystems (including related factors such as environmental flow requirements), natural and 
impacted groundwater quality. 

2.3 Groundwater conditions Current and historical trends in groundwater levels, groundwater quality, saline intrusion 
conditions, identification of subsidence and saline intrusion conditions.  

2.4 Groundwater quality threats Assessment of aquifer vulnerability, and potential contamination sources based on analysis of land 
use, potentially polluting activities in the basin, and planned developments. 

2.5 Groundwater availability assessment Quantification of current and annual future groundwater balance in the basin. To include: i) current 
groundwater inflows and outflows and predicted future flows and storage, based on potential 
changes in abstraction (quantification of relationship between abstraction yield and groundwater 
flows) ii) estimate of resulting conditions when the planned yield is abstracted iii) estimate of the 
response time. 

3. Sustainable 
management criteria 
  

3.1 Goals for sustainability indicators Develop a list of sustainability goals for the basin, and select sustainability indicators (i.e., those that 
are relevant of the 6 prescribed indicators).   

3.2 Recommend groundwater uses Based on sustainability goals, and related acceptable impact, establish sustainable aquifer yield 
(through liaison with stakeholders & authorities). Match groundwater availability with water 
requirements. Where groundwater is not being fully utilised recommended uses of groundwater 
can be provided. Includes decentralised use, centralised use for domestic purposes, industrial and 
agricultural uses. Where groundwater use already exceeds the sustainable aquifer yield the 
associated thresholds will either be already breached or be breached in future (related to the 
response time), and a re-allocation may be triggered. 

3.3 Measurable objectives A measurable objective is set for each sustainability indicator.  
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SGS Section SGS Sub-sections Details / required content 
3.4 Thresholds A minimum threshold is set for each measurable objective based on impacts that are acceptable. 
3.5 Source Protection Zones Along with the identification of groundwater quality threats (in subsection 2.4), support the 

delineation of SPZs and the establishment of control of activities in recharge and SPZ areas. 
3.6 Monitoring network Description of a monitoring network capable of collecting sufficient data to demonstrate 

groundwater condition, evaluate SGS implementation, demonstrate progress towards achieving 
goals. Reasons for site selections. Monitoring protocol including methods, reporting requirements 
and standards 

4. Additional SGS 
elements 

4.1 Any required additional measures  Development of any additional or special measures, such as measures to manage saline intrusion, 
or remediation requirements. 

5. Management 
actions 

5.1 Any projects or actions implemented to 
achieve sustainability goal 

Planning, along with costs, timelines and legislative requirements, for any specific projects that 
need to be launched to support achieving the sustainability goals. 

6. Plan 
implementation 

6.1 Implementation measures To include a roadmap for implementation including costs and schedule, mechanism for updates, 
mechanisms for control and reporting. 
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Figure 2-1 Flowchart showing the steps taken in the development of a SGS  
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Figure 2-2 Relationship between sustainability indicators, minimum thresholds, and undesirable results. CDWR, 
2017. 

 
Figure 2-3 Example of minimum threshold, for groundwater level. CDWR, 2017.
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3 BIG DATA ANALYTICS  
 

3.1 OVERVIEW 

The overall aim of the collaboration is to test the implementation of big data analytics to achieve sustainable 
transboundary groundwater management. An overview of big data analytics is provided in the report for Theme 1. 

3.2 APPLICATION OF NEW (“BIG DATA”) APPROACHES WITHIN THE SGS 

Konikow and Bredehoeft (2019) provide a thorough discussion of the source of abstracted groundwater based on a 
definition of sustainable groundwater use that is in line with that provided in section 2.1. Furthermore, Konikow and 
Bredehoeft (2019) summarise available approaches and technologies for measuring elements of the aquifer flow regime 
on pumping i.e., change in storage, change in recharge and change in discharge. Many of these approaches are traditional 
to groundwater science, and some are new and emerging technologies related to “big data approaches” (machine and 
deep learning). Examples from literature where “big data approaches” have been applied for meeting the requirements 
of the SGS are listed in Table 3-1 based on known examples. Machine learning has been applied in groundwater 
assessments for the analysis of high-resolution imagery, for monitoring changes in land use (the USGS LCMAP 
programme; Zhe & Woodstock 2014), and streamflow (the USGS PROSPER programme).  The research carried out in 
parallel to this project, under the collaboration, includes: 

1) the development of a master database for groundwater data, including the development of codes to assemble, 
verify and harmonise data from disparate datasets (theme 1) 

2) the generation of new data sources using machine learning modelling techniques to generate groundwater 
quality data from citizen science sources (theme 2) 

3) the generation of new data sources based on the downscaling of data from remote sensing data sources (theme 
3) 

 
Each of these research projects essentially provide new approaches that support the monitoring of groundwater, data 
from which informs part 1 and 2 of the SGS, and data from which is used to confirm aquifer performance compared to 
the established sustainability indicators (section 3 of the SGS). There appear to be opportunities for new approaches for 
the monitoring of groundwater and of the sustainability indicators established within the SGS, and there appears less 
application of new (big data) approaches for the setting of the groundwater availability related sustainability indicators.   
 
The foundation to achieving sustainable groundwater use is to quantify the relationship between abstraction and aquifer 
fluxes, which generally requires numerical models (Box  2-2). Once this relationship is known, an acceptable level of 
impact and thereby thresholds for sustainability indicators can be established.  The reliance on numerical models is 
recognised in the GSP guidelines and legislation which state that “GSPs must use a numerical groundwater model or an 
equally effective method, tool, or analytical model to evaluate and quantify projected [groundwater availability and 
groundwater levels] and to quantify surface water depletion (Cal. Code of Regulations §354.18 and §354.28(c)(6)). A 
model is required to determine the equivalent groundwater yield available for minimum thresholds such as 
groundwater level, or the amount of artificial recharge required to meet minimum threshold. Given the complex nature 
of groundwater and the interdependent responses of the system to change, consideration of the long-term implications 
of different management actions on these systems is virtually impossible without the use of models (Moran, 2016).  
 
However, numerical models require time and appropriate expertise to develop, and have large data requirements to 
adequately parameterise the physical system. Furthermore, errors in the conceptual understanding of the aquifer lead 
to uncertainty in the numerical simulation. Our reliance on numerical models and their shortcomings has made it 
“appealing to consider data-driven & machine learning methods based on nonlinear interdependencies that may be able 
to predict groundwater level change without deep knowledge of the underlying physical parameters” (Sahoo et al, 2017, 



 

Machine Learning Models for Groundwater Availability 35 
 

pg. 3878).  Machine learning methods have been widely applied to date in examples such as replicating monitored 
(historical) groundwater level change in order investigate the aquifer behaviour, for example determining whether 
climate or groundwater use is the major control on groundwater levels, and for changes in pumping (Ngoie, 2017). 
Research has also been carried out predicting the future groundwater level response to climate variability (Wunsch et al, 
2017).  
 
This project was to pilot various aspects of the SGS that can be supported by “big data approaches”, within the case study 
site. Given the focus of this theme on supporting sustainable groundwater use, it is appropriate to concentrate specifically 
on testing the viability of machine learning methods to quantify the relationship between abstraction and aquifer fluxes 
(providing the data for establishing sustainability indictors). In piloting this aspect of the SGS, the research therefore aims 
to address the following questions (a subset of aim 2 in section 1.3):  

• Can we use ML methods to forward predict groundwater level in relation to different future stresses (recharge, 
abstraction)?  What is the efficacy in terms of length of prediction and stresses that are not seen in training 
dataset? 

• How can we use ML methods to generate aquifer fluxes? What is the efficacy? 
 
Whilst there is research on the use of ML models to predict the impact of rainfall changes on groundwater levels, and the 
use of ML models to understand the influence of factors on groundwater level change, ML models have not (to the 
knowledge of the team) been used for assessing aquifer wide groundwater fluxes and the impact of abstraction on these 
fluxes.  
 
The approach applied to the machine learning modelling to address these research questions is as follows: 

1. Simulate historical groundwater level [storage] and aquifer fluxes over time [discharge to surface water, 
groundwater abstraction] and if possible, investigate demonstrate causal / effect links. This requires at minimum 
a ML model able to recognise pattern between groundwater level, discharge, use, rainfall.  

2. Use the developed ML model to project groundwater level (storage) forward for a different abstraction or rainfall 
input. 

3. Use the developed ML model to project discharge forward for a different minimum groundwater level (storage) 
and different abstraction. 

  



 

Machine Learning Models for Groundwater Availability 36 
 

Table 3-1 Selected elements of SGS where new technologies (big data approaches) have been applied in 
literature 

SGS Sub-sections Traditional tools  Selected new tools (literature) 
2.1 Description of 
SGS area 

Spatial data 
processing, literature 
review 

1) Airborne electromagnetic methods to delineate aquifer in 3D and 
changes in storage detectible (USGS; Valseth / Valder).   
2) Artificial neural networks (deep learning) for predicting and 
understanding groundwater level responses (Ngoie, 2017; Wunsch et 
al, 2017) 

2.2 
Hydrogeological 
conceptual model 

Spatial and point data 
processing and 
analysis, literature 
review.  

2.3 Groundwater 
conditions 

Mapping and graphing 
of water levels and 
quality.  

2.5 Groundwater 
availability 
assessment 

Borehole pump testing 
for borehole yields.  
Numerical 
groundwater models 
to determine aquifer 
yield in relation to 
acceptable impacts of 
abstraction. 

Changes in storage:   1) Numerical models calibrated to groundwater 
level change provide change in storage as output (Faunt et al, 2009).  
2) Head changes monitored and integrated with estimates of storage 
coefficient (McGuire, 2017).  3) Microgravity: Repeat surveys for 
monitoring changes in groundwater storage (if GWL and porosity is 
known) (USGS: Koth & Long 2012)   
 
Changes in discharge:  Monitoring changes in streamflow (and could 
be correlated to changes in GW contribution to baseflow) via high 
resolution satellite imagery (images processed with machine learning 
techniques to recognise and quantify flow).  USGS PROSPER.  
Recharge and changes in recharge:  Monitoring land use changes (and 
predicting land use changes) in order to assess impact on water 
demand (agricultural changes) or recharge (hardening or surfaces). 
(USGS's LCMAP: Zhe & Woodstock 2014.  (Use of algorithm for 
continual automated analysis of Landsat images) 

 

3.3 MACHINE LEARNING  

3.3.1 Introduction to machine learning 

Machine learning is an evolved subfield of artificial intelligence (Marinósdóttir, 2019). Mohri et al. (2018), defines 
machine learning as algorithms that learn and improve from experience in the form of data collected to make accurate 
predictions. Machine learning has become a powerful tool for predictive analysis (Ye, 2015). Machine learning is a broad 
and growing field. Figure 3-1 summarises the various categories and types of machine learning models applicable to this 
study.  

Machine learning algorithms are generally grouped into two categories: supervised and unsupervised algorithms (Table 
3-2). Supervised learning algorithms are used when input and output variables are clearly labelled. The goal is to learn 
patterns and correlations between variables from previous experience (training data) and use that to make predictions 
on the unseen or unknown data (test data). There are two subcategories in supervised learning; classification in which a 
model aims to predict categorical or class labels, and regression in which the models attempt to predict a continuous 
output (Alloghani et al., 2020). In unsupervised learning, the algorithm infers patterns from the dataset with no reference 
to known or labelled outcomes. The goal is to discover the underlying structure of the data. Unlike in supervised machine 
learning, unsupervised machine learning methods cannot be directly applied to regression or classification problems 
because the model does not have a reference for what the output data should be, making it impossible to conduct model 
training (Alloghani et al., 2020). To extract meaningful information, the model explores the structure of the data.  There 
are a wide variety of machine learning techniques to model regression data using supervised learning. One of the more 
popular techniques is the artificial neural network (ANN) (Maier and Dandy, 2000).  
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Table 3-2 Comparison of supervised and unsupervised machine learning algorithms 

Basis for 
Comparisons  

Supervised Unsupervised 

Requirements  Input and output variables are clearly 
labelled  

Only input data is given with no reference to output 
data  

Goal  To determine the function so well that 
when new input data is given, the model 
can predict output  

To model the hidden patterns or underlying structure in 
the given input data to learn about new data  

Example Classification - predicting a discrete class 
label output (i.e., 0 or 1) 
Regression – predicting a continuous 
quantity output (i.e., time series data) 

Clustering - dividing the data points into several groups 
such that same trait will be together in the form of 
cluster 
Association - finding associations amongst items within 
large commercial databases 

 
Figure 3-1 Flow chart summarising the classification of some machine learning techniques. The green text 
highlights those applicable to this study. 
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3.3.2 Artificial neural networks (ANNs) 

A wide variety of different machine learning techniques are available to model groundwater levels.  In this work, 
supervised ANNs, specifically the RNNs the long short-term memory and the neural network auto-regression models 
were applied to predict groundwater levels in the Grootfontein and Steenkoppies compartments respectively.  
 
ANNs are a type of machine learning algorithm designed to simulate the way the human brain analyses and processes 
information. The human brain can memorize, learn, recognize patterns and yet still generalise in a wide variety of 
circumstances. The ability of the brain to do this is the driving factor behind the development of neural networks which 
attempt to mimic biological neural systems (Engelbrecht, 2007). ANNs are one of the most well-known machine learning 
algorithms and was first developed by McCulloch and Pitts in 1943 (Engelbrecht, 2007). ANNs are a valuable tool for 
modelling complex non-linear issues which are difficult to describe with conventional methods, specifically in situations 
where the outcome is more important than the understanding of the involved process (Wunsch et al., 2018).  In 
hydrology, ANNs have been widely used as a supervised algorithm, specifically as a regression problem for time series 
forecasting. Neural networks have been favoured due to their ability to capture and represent input and output 
relationships, whether linear or nonlinear.  
 
The architecture of an ANN consists of three main parts namely; the input layer, where data is received from the external 
environment; hidden layers, where the majority of the internal processing of the ANN occurs such as extracting the 
patterns associated with the data; and the output layer, which produces the network outputs from the processing 
performed in the hidden layers (Da Silva et al., 2017). The hidden layer can be considered similarly to a “black box” 
which is used in modelling. Each layer of an ANN comprises of nodes that are linked by weighted connections. A node 
receives a weighted input to which a bias is added or subtracted to gauge the input to a useful range to improve the 
ANN’s performance (Shahain et al., 2008). Depending on how the connections between the neurons are organised, an 
ANN can either be classified as a feedforward neural network (FFNN) or a recurrent neural network (RNN). 
 
If the connections between the neurons are in one direction, from inputs to outputs, the ANN is classified as an FFNN 
(Figure 3-2) (Agatonovic-Kustrin and Beresford, 2000). Nodes in one layer are connected to nodes in the next layer but 
not nodes in the same or previous layer. FFNNs have been used in modelling hydrological events and for groundwater 
levels in aquifer systems (Coulibaly and Baldwin 2000). However, FFNNs can only accurately predict future values one 
step ahead (for a short period) hence they are often described as being static (Giles et al. 1997; Chiang et al. 2004). The 
only input FFNN uses for predictions is the current data point fed into the model. FFNN are not able to “remember” the 
past data but instead remembers the formative moments of training (Giles et al. 1997; Haykin 1999). They “remember” 
the relationships between data, but to make a prediction using only the information at that specific time step. 
Therefore, while FFNNs are more prevalent in modelling hydrological systems as stated by Maier and Dandy (2000), 
they lack the feedback connections necessary to model dynamic systems making them less applicable in the modelling 
of time-dependent patterns (Brezak et al. 2011). 

If the connection between the neurons is in both a forward and backwards direction, the ANN is classified as an RNN 
(Figure 3-2)  (Da Silva et al., 2017). RNNs are different from FFNNs as the networks final output is directed back into the 
input of the same or previous layer and stored as a hidden state in the model (Agatonovic-Kustrin and Beresford, 2000). 
RNNs have great success in determining time dependant patterns and can be employed for time-variant systems, such 
as time series prediction, system identification and optimisation, process control etc. (Brezak et al., 2012). The 
chronological information stored in the RNNs hidden state extents several time stamps and cascades forward to 
influencing the predictions going forward (Taver et al., 2015). Therefore, an event downstream in time is a function of 
one or more events before the current timestamp. This added memory allows RNN to determine time dependant 
patterns more accurately compared to the FFNNs (Brezak et al. 2011). RNN have the potential, therefore, to be 
successfully applied to model hydrogeological processes and produce reasonable solutions even when there is limited 
information about the physical properties of the problem area.  There are many variants of RNNs, each having a slightly 
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different architecture. One drawback to modelling using RNNs is that the prediction error increases with time. There is 
an error on the predicted output, which is fed back into the model, causing an accumulation of errors as predictions are 
made further into the future (Le et al., 2019). 
 

 
Figure 3-2 The architecture of Artificial Neural Networks: A) Feed Forward Neural Network where the 
connections between the nodes are in a forwards direction and B) Recurrent Neural Network where the connections 
between the nodes are in a forward and backwards direction, and the output is directed back into the input of the same 
or previous layer and stored in a hidden state (Source: Quiza and Davim, 2011; Ruiz et al., 2016)  

 

3.3.3 Modelling Time-series Using Artificial Neural Networks 

The basic concept to model a time series using ANNs is to predict the target variable, , assuming it has a relationship 
with input variables,  (Wickham, 2016). In this study, the groundwater levels are the forecasted target variable, using 
the  variables of rainfall, spring discharge, temperature and groundwater usage. 
 
How to utilise the time series at hand to create the model and assess its performance is referred to as the model pipeline.  
It is common practice to split the time series of both the target and the input variables into two, the training, and the test 
subsets (Kuhun and Johnson, 2019). Time series order must be maintained when split to ensure that the model picks up 
the patterns in the data (Agrawal and Adhikari, 2013).  
 
The training data set is used to develop the model and allow for the model to recognise and “learn” the patterns in the 
target variable ( ) and the relationships between the target variable and input variables ( ) (Wickham, 2016). During 
training, the model makes use of both the time series from the input and target variables to optimise parameters such 

 

 

 

 

A) 

B) 
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as the number of hidden layers, the weighted connection between layers and the number of nodes in each layer, so that 
the model can predict the target variable with the lowest error, referred to as hyper-parameter tuning. Although one can 
set the model parameters manually, hyper-parameter tuning is typically carried out by the ANN adaptively based on the 
data fed to the model (Wickham, 2016).  
 
The hyper-parameter tuning ability of the ANN can be optimised through several methods, one of which is cross-
validation. Cross-validation is an effective method as it increases the generalisability of the model (Kuhun and Johnson, 
2019). Cross-validation was used in this study and explained in section 4.2.2.1. Once the model training is complete, and 
the hyper-parameters of the model are optimised, the model simulates the target variable for the training data. This 
allows one to see if the data is overfitting or under-fitting. Overfitting is when the model learns the noise in the training 
data so accurately (fits all peaks at troughs exactly) that it negatively affects the performance of the model when 
predicting new data (Wickham, 2016). Under-fitting is when the model is unable to simulate the training data or predict 
new data (Wickham, 2016). If simulated target output for the training data shows a good but not exact fit to the data, 
then the model is ready to make predictions. 
 
The developed ANN model does not “see” the target variable it aims to predict but make predictions by observing the 
consistencies and patterns in the test data set of the input variables and provide predictions based on what the model 
has learnt during training (Agrawal and Adhikari, 2013). The test data should remain unused until the final model is 
developed. The target variable test data is an unbiased assessment of the model’s performance (Adelabu et al., 2015). 
The test data of the target variable is used to assess the model’s predictive capability by statistically and graphically 
comparing the predictions made by the model with the actual measured values of the target variable (Pani et al., 2019). 
If the model successfully predicts the target variable with a suitable error level, then one can deploy the model and use 
it to make additional predictions. If the model does not successfully predict the target variable and the error is too large, 
then the model pipeline would need to adjust until the model can successfully predict the target variable.  
 

3.3.4 Use of machine learning models in hydrogeology 

In the last decade, neural networks have been used and applied for time series prediction tasks due to their ability to 
model complex non-linear functions (Gao and Er, 2005).  The practical implementation of machine learning techniques 
for groundwater modelling has not yet taken off but has been explored in research (Kenda et al., 2018). Some of the 
machine learning techniques successfully used to model groundwater levels include: ANNs first used in the field of 
hydrogeology by Aziz and Wong (1992); support vector machines applied by Yoon et al., (2011); and autoregressive (AR) 
models, used by authors such as Shirmohammadi et al., (2013) and Wunsch et al., (2018).  
 
Maier and Dandy (2000) assessed 43 papers on neural networks for the prediction and forecasting of water resources. It 
was found that most authors using ANNs for hydrogeological applications make use of FFNN, however recently there has 
been more investigations on the use of RNN, and the Neural Network Autoregression (NNAR) for hydrogeological 
modelling (Shirmohammadi et al., 2013; Wunsch et al., 2018). 
 
Sreekanth et al. (2009) used FFNN to develop a model that could predict monthly groundwater level fluctuations in the 
Maheshwaram watershed in India. Monthly groundwater levels were collected between 2000-2006 from 22 wells in the 
study area. The ANNs were developed by using feedforward neural network and trained with the Levenberg-Marquart 
algorithm. The ANNs predicted groundwater with an accuracy (an R2) of 0.93. This study concluded that satisfactory 
groundwater level predictions could be made using limited groundwater level records.  
 
A neural network was applied in India by Nayak et al. (2006) which used monthly rainfall, irrigation and canal release to 
predict groundwater levels. The model produces groundwater level predictions up to four months. However, the model 
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performance deteriorates after two months prediction because the error in the model starts to accumulate and shows 
in the predictions.  
 
Shamsuddin et al. (2017) and other authors have used neural networks to forecast groundwater levels on a daily temporal 
resolution. Shamsuddin et al. (2017) showed that neural networks are capable of modelling daily groundwater levels 
using rainfall, temperature, streamflow, and river water level data as inputs along with values of groundwater level.  
 
Lee (2019) predicted hourly groundwater levels using FFNN to find the impact of natural factors and anthropogenic 
factors such as artificial recharge and pumping on groundwater level. The FFNN was trained using the back-propagation 
algorithm. It was concluded that neural networks models were useful to predict groundwater level fluctuations even 
when highly variable anthropogenic factors are considered. The model was successfully used to predict groundwater 
levels with acceptable errors. However, a slightly higher error was encountered in the wells where there was a more 
significant anthropogenic influence on the groundwater.   
 
Daliakopoulos and Coulibaly (2005) made use of FFNN, RNN and the Radial basis function network (RBF) to predict 
groundwater level fluctuations 18 months ahead. All the models performed sufficiently. However, the model that 
performed the best was the FFNN trained with the Gradient descent with momentum and adaptive learning rate 
backpropagation (GDX) algorithm. 
 
Chang et al. (2016), is one of the few studies where groundwater level change at an aquifer scale is modelled at a monthly 
temporal resolution. This study used a combination of a Self-Organised Map (SOM) and Nonlinear Autoregressive with 
Exogenous Inputs (NARX) network (a type of NNAR) for predicting basin-scale groundwater level in the Zhuoshui River 
basin in Taiwan. Monthly data sets from 203 groundwater stations, 32 rainfall stations and six flow stations between 
2000 and 2013 were used to for modelling. The results indicate that the NARX can predict reliable groundwater level 
predictions (R2 >0.9 for training and test cases) at a basin scale. The finding by Chang et al. (2016) shows the applicability 
of a NNAR for large scale environmental systems.  
 
Guzman et al. (2017) used a NNAR to predict daily groundwater levels up to three months ahead. The predictions become 
less accurate over time, and the best performance is shown for predictions 15 days ahead with a minimal error of less 
than 0.0013 m between measured and predicted values. Comparable to Guzman et al., (2017), Wunsch et al., (2018) also 
made use of a NNAR model, the NARX, to model groundwater level as a weekly temporal resolution. Groundwater levels 
from boreholes both influenced and uninfluenced by nearby pumping from three different aquifer types, (karst, fractured 
and porous) were modelled using rainfall and temperature time series as inputs. The study demonstrated that the NARX 
can be used in these three aquifer types with simple readily available input variables. The wells that were influenced by 
pumping performed worse than those uninfluenced by pumping. Overall, the NARX showed promising results on 
groundwater predictions with the only two input variables. 
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Table 3-3 Summary of studies using ANNs in hydro(geo)logical systems.  FFNN: Feed Forward Neural Network, RNN: Recurrent Neural Network, NARX: Non-linear Auto 
Regressive model with Exogenous Outputs, LSTM: Long Short-Term Memory 

Author Model 
algorithm 

Target variable and Input variables Temporal resolution Total sample 
size 

Prediction 
length 

Accuracy 

Sreekanth et 
al. (2009) 

FFNN Target: Groundwater levels 
Input: Rainfall, evapotranspiration, 

temperature, humidity, river discharge 

Monthly 72 24 months R2 = 0.93 
RMSE= 4.50 m 

Nayak et al. 
(2006) 

FFNN Target: Groundwater levels 
Input: Rainfall, canal releases 

Monthly 
 

96 4 months RMSE=0.32-0.58 m 

Shamsuddin 
et al., (2017) 

FFNN Target: Groundwater levels 
Input: Rainfall, 

temperature, river stage, stream flow rate 

Daily 406 121 days R2 = 0.55-0.75 
MSE=0.03-0.1 m 

RMSE= 0.01m 
Lee et al. 2018 FFNN Target: Groundwater levels 

Input: Rainfall, groundwater pumping, artificial 
recharge 

Hourly 
 

8712 2520 hours 
(105 days) 

R2 = >0.9 
NSE= >0.75 

RMSE=3-6 cm 
Daliakopoulos 
and Coulibaly 

(2005) 

FFNN 
RNN 
RBF 

Target: Groundwater levels 
Input: Rainfall, temperature 

Monthly 180 18 months FFNN: R2 = 0.59-0.99 
RMSE= 2.11-9.84 m 
RNN: R2 = 0.61-0.91, 
RMSE= 3.31-9.32 m 

RBF: R2 = 0.74 
RMSE= 5.23 m 

Chang et al., 
(2016) 

NARX Target: Groundwater levels 
Input: Rainfall, river flow 

Monthly 165 33 months R2 = 0.68-0.97 
MSE=0.25-0.96 m 

RMSE= 0.34-1.18 m 
Wunsch et al. 

(2018) 
NARX Target: Groundwater levels 

Input: Rainfall, temperature 
Weekly 1624 - 3640 

(Borehole 
dependent) 

1 day – 6 
months 

R2 = 0.18-0.91 
RMSE=0.10-1.45 m 

RMSEr = 0.03-0.51 % 
NSE=0.26-0.94 m 

Guzman et al., 
(2017) 

NARX Target: Groundwater levels 
Input: Rainfall, previous groundwater levels 

Daily 2920 Up to 3 
months 

R2 = 0.83-0.92 
MSE=0.001-1.002 m 
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Author Model 
algorithm 

Target variable and Input variables Temporal resolution Total sample 
size 

Prediction 
length 

Accuracy 

NSE=0.84-0.96 m 
Le et al., 
(2019) 

LSTM Target: Discharge 
Input: discharge, rainfall 

Daily Station 
dependant 

1 – 3 days RMSE = 152.4 – 594m 
NSE = 86.2 – 99.1% 

Supreetha et 
al., (2019) 

 

LSTM 
FFNN 

Target: Groundwater levels 
Input: Previous groundwater levels, rainfall 

Monthly Not highlighted 12 months LSTM: RMSE= 2.4 
FFNN: RMSE =3.1 

Zhang et al., 
(2018) 

LSTM 
FFNN 

Target: Groundwater levels 
Input: water diversion, evapotranspiration, 

temperature, precipitation, time 

Monthly 168 12months LSTM: R2 = 0.789 – 0.952 
FFNN: R2 = 0.004 – 0.495 

Bowes et al., 
(2019) 

LSTM 
RNN 

Target: Groundwater levels 
Input: groundwater levels, rainfall, sea level 

Hourly 8 years 1 – 18 hours LSTM: RMSE = 0.09m 
RNN: RMSE = 0.14 
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3.3.5 Long Short-term memory (LSTM) 

The LSTM (a type of RNN) was first introduced by Hochreiter and Schmidhuber in 1997 to address problems of the 
drawbacks of modelling using an RNN (the accumulation of error with predictions further in time) by adding a unique set 
of memory cells that replace the hidden layer neurons of the RNN (Le et al., 2019). LSTMs are capable of avoiding long-
term dependence problems that occur with the traditional RNN due to the added memory cells. Instead of a single neural 
network like the standard RNN, the LSTM model is capable of filtering information through a gate structure to maintain 
and update the state of the memory cells. Figure 3-4 shows the structure of the LSTM neural network.  
 

 
 

Figure 3-3 Structure of the LSTM neural network. Reproduced from Yan (2018) 

As shown in Figure 3-4, the hidden state and the cell state are transferred to the next cell. The cell state is the main chain 
of data flow, allowing data to flow forward unchanged. Sigmoid functions are used to add or remove data from the cell 
state. Gates are similar to a series or layer of matrix operations which contain different individual weights. By using the 
gate structure to control the memorizing process, LSTMs can avoid the long-term dependency problem. The LSTM 
network has three gates: input, forgotten and output gates (Le et al., 2018).  
 
The forgotten gate determines which cell state information is discarded from the model. This process of excluding and 
identifying data is decided by the sigmoid function. The function accepts the output h(t-1) at time t – 1 and the current 
input (Xt) at time t as inputs and combines them in a long vector [ht-1, Xt e 
 

=  ( [ , ] +  ) 
3-1 
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Where  is the weight of the matrix,  is the bias of the forget gate and  is the sigmoid function. The gate will output 
a value between 0 and 1 where 1 indicates complete reservation of information and 0 is complete discarding.  
 
The input gate determines how much of the current time network input ( ) is reserved into the cell state, which prevents 
insignificant information from entering the memory state. The input gate has two functions: the sigmoid function which 
decides whether the new information should be ignored or updated (0 or 1) and the tanh function which decides the 
level of importance (-1 to 1) by giving weights to the values. The two values are then multiplied to update the cell state, 
and this new memory is added to old memory  resulting in .  
 

=  ( [ , ] +  ) 
3-2 

 
=  ( [ , ] +  ) 

3-3 

 
=   +   

3-4 

Here,   and  are the cell states at time t - 1 and t, while W is the weight matrices and b is the bias of the cell state. 
 
The output gate controls how much of the current state is discarded. The sigmoid layer determines which parts of the 
cell state make it to the output layer, and then the cell sate is processed by the tanh layer and multiplied by the output 
of the sigmoid function (Ot) to obtain the final portion.  
 

=  ( [ , ] +  ) 
3-5 

The final output value of the cell is defined as: 
=   tanh ( ) 

3-6 

 

3.3.6 Neural network auto-regression (NNAR) 

Neural Network Autoregression (NNAR) is one variant of the RNN. Although RNNs have limitations in making long-term 
predictions (the problem of vanishing gradients, Scardapane and Wang, 2017), NNARs usually provide better results than 
conventional RNNs for predicting groundwater levels as these models keep information about the data two or three 
times longer compared to standard RNNs (Wunsch et al., 2018).  Like an RNN, the NNAR model’s next output is not only 
dependant on the present inputs but also previous output signals of the target variable (also known as lagged inputs) 
(Izady et al., 2013). However, unlike an RNN and the LSTM), the NNAR’s previous timestamps are not stored in a hidden 
state but given as another input to the model (Figure 3-5) (Izady et al., 2013). 
 
The internal processing of the NNAR model is a neural network with a linear combination function and a non-linear 
activation function (3-7 and Equation 3-8) (Yoon et al., 2011; Khalek et al., 2016). The inputs to the model are put through 
the linear function, and the result is then passed through the non-linear sigmoid activation function (Khalek et al., 2016). 
 
The linear combination function at node  in the hidden layer is defined as below (Yoon et al., 2011): 

= +  
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3-7 

Where: 
  = ith input from the node in the previous layer 
  = input value at the present node,  is the bias  

 = weight connecting  and ,  
 = sigmoid activation function 

N = number of nodes in the previous layer 
 
The sigmoid activation function for target variable , is formulated as (Khalek et al., 2016): 

( ) =
1

1 +
 

3-8 
The values for the weights and bias are “learned” from the data. To begin with, the values for the weights are chosen 
randomly and then updated using the training data so that the overall predictive error is minimised (Zhang and Hu, 1998). 
Consequently, the NNAR (or any ANN) will produce slightly different predictions each time the model is run (Scardapane 
and Wang, 2017). To obtain a robust evaluation of the model’s ability to make predictions, one should run the NNAR 
several times, and the final results should be an average of the several model runs. The general formula for an NNAR 
model fitted to the data is given in below 3-9 (Ruiz et al., 2016): 
 

( ) = (x(t  1), y(t  1), y(t  2), . . . , y(t  p))  +  e(t) 
3-9 

Where: 
  = neural network used to fit the data 

 = target time series to predict   
 = input variable used to predict the target 
 = lagged inputs of the target time series 
( ) = the noise 

 
The model makes predictions recursively. To predict one step, the model simply uses the available historical inputs. For 
predicting two steps, the model simply uses the one-step prediction as an input, along with the historical data (Hyndman 
and Athanasopoulos, 2014). This process proceeds until all the required predictions are calculated. 
 

 
Figure 3-4 Basic architecture of the Neural Network Autoregression (NNAR) where the connections between the 
nodes are in a forward and backwards direction, and the outputs are fed as a new input to the model (Source: Ruiz et 
al., 2016). 
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4 CASE STUDY 1: GROOTFONTEIN  
 

4.1 DESCRIPTION OF STUDY AREA (CONCEPTUAL MODEL) 

4.1.1 Location and setting  

The Grootfontein dolomitic compartment (Barnard, 2000; Meyer, 2014), formally delineated by DWA (2009) as the 
Molopo/ Grootfontein water management area (GMA) (section 1.5), is Among South Africa's most important aquifers. 
The compartment is located southeast of Mafikeng in the North West Province (Figure 4-1).  The aquifer contains good 
quality water that supplies the domestic and agricultural water needs of people in Mafikeng region with 20% of 
Mafikeng’s domestic water being supplied by the aquifer. Other towns such as Ventersdorp, Zeerust, Lichtenburg, 
Itsoseng and Ottoshoop also rely on the dolomitic aquifer as a source of water (Holland and Wiegmans, 2009).   
 

 
Figure 4-1 Grootfontein/ Molopo GMA location map.  

4.1.2 Topography  

The Grootfontein aquifer is a typical ancient karst landscape with a very flat land surface (Van Tonder et al., 1986), and 
the GMA covers an area of approximately 139 km2.  The flat, weathered land surface slopes very gently towards the north 
with a gradient of approximately 50 m in 16 km (Van Tonder et al., 1986). 

4.1.3 Climate  

Forming the southern part of the Kalahari Desert, the North West Province offers almost year-round sunshine. The 
summer months (from August to March) bring brief thunderstorms. The province has an above (national) average rainfall 
of 200 to 350 mm annually. Summer temperatures range between 22 and 27º C. The average winter (from May to July) 
temperature is 16ºC but can range from 2 to 20º C in a single day. 
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Three South African Weather Service (SAWS) weather stations surround the compartment; one within the Mafikeng 
region (North West of the compartment), one in Marico (North of the compartment), and another in Lichtenburg (South 
of the compartment), shown in Figure 4-1. The three stations were selected due to the availability of longer historical 
data and their positions relative to the compartment boundaries to provide an indication of the rainfall and temperature 
variability across the compartment. Monthly rainfall and temperature data were obtained from the stations (because 
groundwater levels were available monthly), over the timeframe shown in Table 4-1. The minimum, maximum and mean 
annual rainfall of each station is shown in Table 4-1. Figure 4-2 and Figure 4-3 illustrate the monthly rainfall and 
temperature values for each station over a common period.  
 
The station located south-east of the compartment (Lichtenburg) appears to have higher rainfall between the period 
1984 to 2009. Rainfall stations in the northern part of the compartment (Mafikeng and Marico) appear to have lower 
rainfall as compared to the southern area. High rainfall events usually occur in summer (from August to March). 
Moreover, the Marico area experiences higher temperatures as compared to Mafikeng and Lichtenburg areas.  
 
Table 4-1 Mean, minimum and maximum annual rainfall for stations around Grootfontein. 

Station Data Availability Minimum Annual 
Rainfall (mm), year 

Maximum Annual 
rainfall (mm), year 

Mean Annual 
Rainfall (mm) 

04722780_Mafikeng 1994-2018 85.6 (1994) 777.4 (2010) 524.51 
05080470_Litchenburg 1984-2018 152.7 (1984) 873.8 (1997) 507.86 
05466303_Marico 1950-2019 159.8 (1994) 902.5 (1956) 609.43 

 
Figure 4-2 Monthly rainfall from three weather stations around Grootfontein.
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Figure 4-3 Monthly temperature from three weather stations around Grootfontein. 

4.1.4 Hydrology and spring flow 

Under natural conditions, recharge to the dolomitic aquifers is largely through rainfall, and they discharge to springs, 
seeps and wetlands (Cobbing, 2018). Spring discharge datasets were therefore required to meet the aims of the ML 
modelling (section 3.2). 

The Grootfontein compartment falls within quaternary drainage D41A. The course of the Molopo River cuts across the 
compartment as shown in Figure 4-1. Historical data for two flow-gauge stations along the Molopo River recorded at 
monthly intervals was sourced from the DWS, namely: D4H013 (1964 – 2017) and D4H014 (1982 – 2019), shown in Figure 
4-4. Gauge D4H014 is located at Molopo eye, which is the source of the Molopo River. Gauge D4H013 is located further 
downstream (west of D4H014) on the Molopo River (see Figure 4-1).  The Grootfontein eye is located more centrally in 
the Grootfontein compartment. The spring discharge dried in 1981, which Cobbing (2018) attributed to the drilling of the 
Grootfontein wellfield boreholes in the vicinity of the spring, and to agricultural abstraction.  
 
The Groundwater Management Area (GMA) of the Molopo/ Grootfontein aquifer incorporates sub-compartments. 
Cobbing (2018) uses the Kliplaagte (or D41A-03) Groundwater Management Unit delineated by DWA (2018) as the 
“Grootfontein aquifer” study area and considered the groundwater in this sub-compartment to discharge to the 
Grootfontien Eye.  The study area selected here is the larger Groundwater Management Area (GMA) of the Molopo/ 
Grootfontein aquifer. The GMAs boundaries are considered by DWA (2018) to be aquifer boundaries in that recharge and 
discharge across that area is related. The spring discharge at Molopo is also considered (somewhat) hydraulically 
connected to groundwater across the Molopo/ Grootfontein GMA and is therefore used as a representation of long-term 
groundwater discharge from the GMA.  The results of Information Gain Ranking assessment demonstrate there is indeed 
a strong correlation between groundwater levels across the Molopo/ Grootfontein Groundwater Management Area 
(GMA) and the Molopo Eye. Whilst this correlation does not prove or disprove causality (i.e., the central Kliplaagte 
Groundwater Management Unit may be less strongly hydraulically linked to the Molopo Eye than the Grootfontein Eye), 
it at least suggests that the Molopo Eye discharge data can be used as a proxy for discharge across the wider area.  
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Figure 4-4 Monthly discharge from two flow gauges on the Molopo River.  

4.1.5 Geology, aquifer systems 

Formed around 2.7 billion years ago, dolomites of the Chuniespoort Group have been tectonically deformed and faulted 
and are intruded by igneous dykes (Tinker et al., 2002). Often weathering to a surface ‘elephant skin’ texture, the 
dolomite outcrops are moderately hard and greyish to brown in colour (Cobbing, 2016). The North West dolomites are 
divided into formations based partly on the chert content which comprise of the Eccles, Lyttleton, Monte Christo and 
Oaktree Formations, that together comprise the Malmani Subgroup of the Chuniespoort Group, Table 4-2 (Johnson et 
al., 2006). The area of the Grootfontein compartment is partly covered by Quaternary alluvium and soils with good 
agricultural potential (Stephens and Bredenkamp, 2002). 
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Table 4-2 Major lithology’s in the Grootfontein (area Barnard, 2000; CGS, 1991; Johnson et al, 2006). 

 

4.1.6  Groundwater levels and flow directions  

Groundwater level data was obtained from the DWS databases HYDSTRA and National Groundwater Archive (NGA) for a 
total of 105 boreholes in the compartment. The groundwater level is measured in meters above ground level (magl) and 
as such is represented as a negative value.  Boreholes that had less than 15 years’ worth of data and more than 50% 
missing data were excluded from analyses resulting in a subset of 28 groundwater level monitoring stations across the 
compartment for modelling. All 28 stations are either currently active or have monitoring records that extend over a 20-
year period. Irrigation is known to have started before the 1960s in the Grootfontein compartment, however records 
showing water levels before the early 1970’s in the Grootfontein area is scarce (Cobbing, 2016). Records at all 28 stations 
began between 1973 and 1986, during which time irrigation increased. All boreholes in the compartment have a gap in 
data from late 2005 to early 2008 (see Figure 4-5), and few water level measurements are available after 2009. In order 
to generate a continuous time-series dataset, which is required for ML modelling, linear interpolation was performed to 
replace missing data with an estimated value (section 4.2.2.3). Only small data gaps (up to a few months) were filled in 
this way, and large data gaps (2005-2019) were not used in modelling. 
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Figure 4-5 Groundwater level in boreholes selected for modelling in Grootfontein.  
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Figure 4-6 Rainfall and groundwater level in the Grootfontein compartment over a common period. 
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Cobbing (2018) analysed groundwater levels in Grootfontein and reports a long-term decline in groundwater levels over 

the period of available data. Several of the boreholes used by Cobbing (2018) are included in the 28 selected here, and 

the same analysis has been performed, showing that 19 of the 28 boreholes selected show a decline over the record, 

with an average gradient (or rate of decline in meters per month) of 0.005905; equivalent to a fall in water level of 2.2 m 

per decade. The rate of decline varies by an order of magnitude across the boreholes from 0.0002 for D4N0108 and 0.002 

for D4N0115, expected due to the heterogeneity of the karst aquifer and the potential local effects of abstraction or 

recharge. The decline in groundwater levels across the region has been related to “over-abstraction”, and the aquifer is 

considered to be in a “dewatered state” (Cobbing, 2018).  

 

A subset of these boreholes is shown in Figure 4-6, along with a 10-year moving average rainfall. This shows a general 

declining trend in rainfall particularly evident from 1977 to 1989, and across the entire dataset (shown in Table 4-3). The 

declining trend in rainfall mirrors the trend in groundwater level closely; both datasets show a significant decline from 

1977 to 1989 with some levelling off between 1989 and 1999. Whilst correlation alone doesn’t signify causation, this 

pattern has not received attention in the literature that attributes the declining groundwater level trend to abstraction 

alone. Groundwater levels will decline on the onset of abstraction until a new dynamic equilibrium is reached (section 

2.1), which will impact natural discharge rates, however it appears likely that declining rainfall and hence recharge has 

also driven the long-term decline in groundwater levels. 

 
Figure 4-7 Location of boreholes used in modelling.  
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Table 4-3 Analysis of linear trend in groundwater level for boreholes Grootfontein, along with rainfall. 

Borehole Latitude Longitude Start date Start water 
level 

End date End water 
level 

Years 
Active 

Trend Trend 
Gradient 

Annual 
drop 

D4N0037 -25.98200 25.92253 1973/08/01 20.62 2012/02/01 28.85 39 Decline 0.00120 0.211 
D4N0053 -25.90942 25.89306 1974/02/01 17.18 2005/01/01 14.92 31 Incline 0.00070 -0.073 
D4N0065 -26.00306 25.90000 1975/06/01 18.50 2000/02/01 20.76 25 Decline 0.00070 0.090 
D4N0066 -26.01917 25.92056 1975/03/01 23.62 2002/04/01 24.50 27 Decline 0.00040 0.033 
D4N0092 -26.03570 25.97200 1975/01/01 29.22 2013/04/01 36.67 38 Decline 0.00090 0.196 
D4N0094 -26.03556 25.97222 1975/01/01 21.24 2004/12/01 33.21 29 Decline 0.00130 0.413 
D4N0108 -25.90844 25.88625 1975/07/01 12.35 2019/06/01 14.42 44 Decline 0.00020 0.047 
D4N0110 -25.95222 25.91028 1976/11/01 11.58 2000/01/01 29.90 24 Decline 0.00320 0.764 
D4N0112 -25.93667 25.90944 1977/01/01 11.02 2003/08/01 27.48 26 Decline 0.00250 0.633 
D4N0115 -25.91797 25.89435 1975/05/01 13.18 2005/03/01 31.89 30 Decline 0.00200 0.624 
D4N0116 -26.00722 25.85500 1975/05/01 1.41 2005/01/01 5.08 30 Decline 0.00010 0.122 
D4N0117 -25.96600 25.84297 1975/05/01 0.93 2019/04/01 6.27 44 Decline 0.00020 0.121 
D4N0123 -26.02806 25.97361 1975/07/01 20.68 2005/01/01 28.14 30 Decline 0.00100 0.249 
D4N0126 -25.96422 25.98111 1976/08/01 17.50 2018/04/01 33.70 42 Decline 0.00120 0.386 
D4N0127 -25.87417 26.00306 1976/09/01 24.64 2005/01/01 25.41 29 Decline 0.00030 0.027 
D4N0130 -25.91750 25.97806 1976/04/01 6.30 2002/12/01 12.70 26 Decline 0.00020 0.246 
D4N0139 -25.95114 26.08372 1977/02/01 22.31 2019/02/01 26.87 42 Decline 0.00008 0.109 
D4N0140 -25.97700 26.09120 1976/01/01 22.95 2017/09/01 24.46 41 Decline 0.00020 0.037 
D4N0141 -25.95958 26.13483 1976/02/01 10.00 2014/05/01 13.46 38 Decline 0.00020 0.091 
D4N0142 -25.89728 26.17186 1977/01/01 23.69 2017/08/01 24.38 40 Decline 0.00020 0.017 
D4N0146 -25.88553 26.01967 1977/01/01 7.31 2011/11/01 20.00 34 Decline 0.00005 0.373 
D4N0147 -25.89425 26.05733 1977/01/01 18.68 2015/06/01 10.93 38 Incline 0.00001 -0.204 
D4N0687 -25.89281 25.96578 1985/03/01 5.55 2012/01/01 1.53 27 Incline 0.00010 -0.149 
D4N0824 -25.93167 25.83556 1983/11/01 13.49 2005/01/01 14.10 22 Decline 0.00050 0.028 
D4N0832 -25.93528 25.97972 1983/10/01 12.62 2004/03/01 11.30 21 Incline 0.00070 -0.063 
D4N0835 -25.95583 25.99194 1983/10/01 15.83 2005/01/01 17.51 22 Decline 0.00009 0.076 
2526CC00033 -25.89400 26.02903 1976/03/01 12.00 2019/09/01 14.04 43 Decline 0.00001 0.047 
2625BB00028 -26.02881 25.97351 1975/07/01 20.68 2004/03/01 28.14 29 Decline 0.00100 0.257 
Mean 
Precipitation 

- - 1950/01/01 95.90 2019/01/01 95.20 69 Decline 0.00060 -0.010 
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4.1.7 Recharge 

Long-term recharge values of between 4.5% and 10% of annual rainfall have been estimated for Grootfontein (Cogho, 
1982; Bredenkamp and van Rensburg, 1983; Dziembowski, 1995, cited in Cobbing 2018). Estimating groundwater 
recharge is particularly complex in the region due to its episodic nature, and lack of data including chloride, stable isotope, 
groundwater level, and local rainfall (Cobbing, 2018). Indirect recharge via irrigation return flow is also unknown.  
 

4.1.8 Abstraction 

The Grootfontein aquifer supports extensive groundwater abstractions for irrigated agriculture, water supply to towns 
and settlements and for industrial use (Cobbing, 2016). Significant groundwater abstraction occurs for agricultural 
irrigation and also for mining and other industrial-based activities. The sum of the registered abstractions per water use 
sector is shown in Table 4-4 based on an extract of registered abstractions (from the DWS Water Authorisation 
Registration Management System, WARMS) in November 2016. 
 
Table 4-4 Summary of registered groundwater use in Grootfontein (WARMS, DWS). 

Water use sector  Number of Registrations Total Use (m3/a) 
Agriculture: Irrigation 261 21 220 316 
Agriculture: watering livestock 11 33 708 
Mining  10 38 927 
Industry  5 951 614 

 
There are other known inaccuracies with the WARMS dataset, including incomplete entries, inaccurate coordinates and 
duplicate entries. Furthermore, the registrations may be registered use rather than actual use and may be under-
estimates for the purposes of securing a license or over-estimate in an attempt to secure a supply. Moreover, several 
users may not be registered (i.e., unlicensed abstraction). Duplicates in the dataset were corrected and registrations with 
missing registered volume amounts were discarded. Following this process, the cumulative registered abstraction within 
the Molopo/Grootfontein GMA boundary totals 22.2 million m3/a. This appears in line with Cobbing’s (2016) lower 
estimate of 18.3 million m3/a for the Grootfontein GMU boundary.   
 
To generate the time series of total use across the compartment shown Figure 4-8, the “registered volume start date” 
and “registered volume end date” was used in conjunction with the “register status”. If the registered status column had 
a value of “active” then the close date for those boreholes was set to 01/11/2016 as this is when the data was acquired. 
The earliest registration start date in the compartment was used to replace the blank values that were found in the 
registered volume start date column.   
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Figure 4-8 Total groundwater use in the study area over time based on WARMS licence registrations. 

4.2 LSTM MODEL SETUP  

4.2.1 Model software and approach 

Tensorflow (Al-Abadi, 2016) in Python (Rossum, 1995) was used to model the LSTM (McKinney, 2010). Pandas, NumPy 
(Van Der Walt et al., 2011) and Matplotlib (Hunter, 2007) libraries were imported for management, processing and 
visualisation of data. Figure 4-9 summarises the methodological approach taken to model the LSTM.  
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Figure 4-9 Flowchart Summarising LSTM model approach.  

 

4.2.2 Model input variables 

This study makes use of the relationship between the target variable (groundwater level), and the input variables to make 
predictions. Suitable input parameters were chosen based on the expected influence the input variable has on 
groundwater levels, and on the data available. Groundwater levels in the Grootfrontein compartment are influenced by 
recharge, and artificial discharge, and changes in these drive groundwater discharge from the compartment. 
Groundwater level time series from 28 boreholes in the Grootfontein compartment were used as prediction targets. 
Input variables included discharge rates, temperature, and precipitation and abstraction rates. Other variables may 
influence groundwater levels (e.g. vertical interaction from neighbouring aquifer compartments or evapotranspiration). 
However, other parameters are difficult to measure and not monitored regularly.  
 
Xu et al. (2020) found that the decomposed signals of rainfall produced better predictions compared to actual measured 
rainfall. A similar observation is seen in this study. Preliminary model results showed a lack of influence of rainfall on 
groundwater levels. Therefore, Seasonal-Trend decomposition using LOESS (STL) time series decomposition (Equation 
4-1), was used to extract the trend of the rainfall time series. The trend of the rainfall time series shown in Figure 4-10 
effectively represents a smoothed rainfall time series and was used as an input parameter which achieved better results. 
STL is a filtering procedure that uses LOESS (locally estimated scatterplot smoothing) to decompose a time series into 
smoothed estimates of three components namely, trend, seasonality and residual (Cleveland et al., 1990). The original 
time series data set, is broken down into the addition of these three components, according to equation  4-1 (Cleveland 
et al., 1990): 

= + +  
4-1 
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Where Yt represents the original data set and Tt, St, Rt refers to the trend, seasonality and residuals components 
respectively for time t. The monthly rainfall time series was broken down into the components according to Equation 4-1, 
and the trend of the rainfall time series (Tt) was extracted and used as the model input for rainfall.  
 

 
Figure 4-10 Graphs showing original precipitation data and the de-noised dataset. 

4.2.3 LSTM Model pipeline  

 

4.2.3.1 Lag and hyper-parameters  

Lag testing was performed to determine the appropriate lag parameter between rainfall and groundwater levels. 
Hydrogeologically there is a time lag between the occurrence of rainfall and groundwater level response (Mcphie and 
Post, 2010), hence accounting for the lag can potentially increase the model’s ability to pick up the correlation of rainfall 
on groundwater levels.  The optimum time lag between rainfall and groundwater levels in the Grootfontein compartment 
was between 2-3 months.  
 
It is necessary to transform the datasets to make them stationary. In the most intuitive sense, stationarity means the 
statistical properties of a process generating a time series does not change over time. This does not mean that the series 
does not change over time but instead the way it changes does not itself change overtime. Stationary data is easier to 
model and will very likely result in better forecasts hence the trend was removed from the features to stationarise then 
added back to forecasts later to return the prediction to the original scale and calculate a comparable error score. A 
standard way to remove a trend is by differencing the data. The observation from the previous time step (t-1) is 
subtracted from the current observation (t). This removes the trend leaving a differenced series. The differenced time 
series is then inverted to its original scale to make forecasts.  
 
The time series were transformed though normalisation according to 4-2.  Normalising the data speeds the learning of 
the model, converts all the variables to the same scale and to a normal distribution (Pedregosa et al., 2011). 
Normalisation applied to the time series after split (Pedregosa et al., 2011): 

=  
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4-2 

Where Z is the standard score after normalisation,  is the observed value,   represents the mean of the sample and  
the standard deviation of the sample. 
  
Twenty percent of the data was used as test and the remaining 80% for training. The LSTM layer expects input to be in a 
matrix with three dimensions: samples (the total of time steps collected or rows of data), time steps (past observation 
for the feature, i.e., a lag variable) and features (the data columns or number of features). Hence the input layer had to 
be reformatted into three-dimensional (3D) vectors to match the architecture of the LSTM model, a process referred to 
as regularising the data. The samples differed per borehole depending on the length of data for that borehole. 
 
For the LSTM model to learn the dependencies more efficiently, there were several modifications related to the 
arrangement and format of data for the input layer. Instead of using the input data vector as only the data at a specified 
time step, the vector has been formatted into a sequential data with a selected sequence length of ten time-steps. This 
may explain the changing trend of the forecasted values which can be seen from the observed values of the ten most 
recent time steps. Increasing the value of the sequential length can potentially increase model accuracy since the model 
can capture a better trend. However, this may result in the LSTM model consuming more resources of the computer 
during training time since the model will have to train a complete neural network. Furthermore, when the sequence 
length varies from 5 to 15 or more the model demonstrates equally excellent performance (Le et al, 2018).  
 
An important step in constructing the LSTM model is hyper-parameter selection such as learning rate, number of units, 
number of epochs. The recommended optimization algorithm for this study is Adam (Kingma & Ba, 2015). This algorithm 
has been widely applied in natural language processing and computer vision. It is an extension on the stochastic gradient 
descent procedure which updates its weights iteratively based on training data. A learning rate of 0.00001 was chosen 
instead of the default 0.001. This was done to make the training process slower and the curve of the loss function 
smoother. The number of units selected was 20. There is no specific reference structure for selecting the number of units 
in each cell hence different values were tested (20, 30, 50) and evaluated on the forecast results. Lastly, the maximum 
number of epochs was set to 1000 in order to record the necessary information during training and validation. One epoch 
in deep learning is defined as when an entire dataset is passed forward and backward through the neural network only 
once.  
 
To prevent overfitting and to improve the effectiveness of the model early stopping and dropout techniques were 
employed. Overfitting is when the model learns the noise and detail in the training data to the extent that it negatively 
impacts its generalisation to new data. Early stopping is used to stop the model when performance on the validation 
dataset starts to decrease or remains constant. The developed LSTM model was set to stop the training process if the 
performance on the validation dataset does not improve after 100 epochs.  
 

4.2.3.2 Cross-validation 

Cross-validation was performed to improve the generalization error of the model and also prevent overfitting, essentially 
improving how accurately the model can predict the outcome value for previously unseen data. Time series cross-
validation based on the rolling window approach (Hyndman and Athanasopoulos, 2014) was used. In this procedure, the 
last few years (depending on the dataset length) of the data is put aside as the test set. The rest of the data is used in 
cross validation to evaluate the predictive power of various models and fine-tune each model’s hyper-parameters. This 
method ensures each training set only consists of observations that occurred prior to any observation in the test set. 
Therefore, no future information is used to train the models. Figure 4-11 illustrates how the data was partitioned.  
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The forecast accuracy is then computed by averaging over the test sets. Since the data is sequentially correlated, 
traditional k-fold cross validation techniques were omitted due to their randomized splits which would cause the time 
dependencies between the observations to be lost. The model run for each borehole was repeated ten times and the 
average prediction was taken as the final simulated result. The error metrics were calculated on the averaged values to 
indicate how well the model is expected to perform on unseen data on average.  
 

 

Figure 4-11 Cross- Validation Scheme for Time Series. 

4.2.3.3 Interpolation  

The gaps in the data set were relatively small with a maximum of 6 missing values (which equates to 6 months) and were 
interpolated linearly. The two most common methods to interpolate groundwater level data sets are the linear and cubic 
spline interpolation (used by authors such as Wunsch et al., (2018) and Daliakopoulos et al., (2005) respectively). A study 
by North and Livingstone (2013) compared the linear and cubic spline methods for interpolation of lake water column 
profiles.  North and Livingstone (2013) created artificial "pseudo-gaps" of various sizes in the data which were filled using 
the two methods. The result of the study suggests that the linear interpolation method interpolates the gaps most 
accurately.   
 
A similar experiment to North and Livingston (2013) was conducted on the data used in this study, to ensure that the 
linear interpolation was a suitable interpolation method. "Pseudo-gaps" of various sizes (1 to 6-month gaps) were 
created. Both linear and cubic spline interpolation were tested to interpolate the pseudo-gaps. The experiment confirmed 
that the linear interpolation method performed best on average between the measured values and the interpolated 
values (Linear interpolation R2 = 0.98 compared to cubic spline method R2 = 0.95). 
 

4.2.3.4 Model evaluation criteria  

The performance of a machine learning model is evaluated using a set of metrics and based on the results, improvements 
are made to the model until a desired accuracy is achieved (Engelbrecht, 2007). The performance of machine learning 
models is defined by how well the models can map the input space to the output space (i.e., fit the target variable to 
observed data) and how well the models can generalize to new points that were previously not seen during training 
(Engelbrecht, 2007). 
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Mean squared error (MSE) measures the average of errors squared. Error in this case means the difference between the 
observed values  and the predicted values . The difference is squared so that negative and positive values do not 
cancel each other out. 
 

 =
1

( )² 

4-3 

 
Root mean squared error (RMSE) measures the average magnitude of the error between observed (o) and predicted (p) 
values. RMSE is a good measure of error that can serve as a loss function to minimize (Engelbrecht, 2007). 
 

 =
1

( )² 

4-4 

 
Mean absolute error (MAE) measures the average magnitude of the errors without considering their direction. It 
calculates the averages of the absolute differences between prediction and actual observation where all individual 
differences have equal weight. 
 

 =
1

( ) 

4-5 

 
R-squared (R2) explains how much variability of one factor can be caused by its relationship to another factor (co-linearity 
between the observed and predicted data). R2 values range from 0 to 1, with higher values indicating less error variance 
(i.e., the closer the value is to 1, the better the fit, or relationship, between the two factors) (Krause, 2005). 
 

 =  (
(   O) (   P)

 (   O)²  (   P)²   

)² 
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In addition to the above metrics, the fit between observed and modelled groundwater levels was assessed qualitatively 
in order to establish that the models that made sense. 
 

4.2.4 Information Gain Ranking  

The input variables ( ) are not equally informative in predicting the target variable ( ), as some variables would be noisier 
or have less of a relationship and hence correlation with the target data set. Mutual information (MI) was used to quantify 
how informative each input variable (rainfall, temperature, spring discharge and groundwater usage) was in predicting 
the target variable (groundwater levels).  MI measures how much information (measured in units called bits) can be 
obtained from one variable given another (Ross, 2014). MI is also called “information gain” and linked to the concept of 
entropy that quantifies the amount of information there is in a random variable (Kraskov et al., 2004). MI measures how 
much, on average, the knowledge of the  variable reduce the uncertainty of the  variable (MacKay, 2005). MI between 
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the input and target variables,  and y, was calculated using Scikit-learn (Pedregosa et al., 2011) in Python (Rossum, 1995) 
according to equation 4-7 (MacKay, 2005): 
 

 ( ; ) = ( )  ( ) 
4-7 

Where  
 = the input variable 

y = the target variable (groundwater level) 
( ; ) = the mutual information for  and y  
( ) = the entropy of    
 ( ) = the conditional entropy for  given  

 
MI is a measure of mutual dependence between two random variables, therefore, I ( ; ) = I ( ; ), and I ( ;   
If  and  are independent, then information about  cannot be obtained from , and the MI equals zero. If  and  are 
deterministic functions of one another, then all the information about  can be obtained from , and the MI equals one 
(Ross, 2014).  
 
MI is a generalised version of correlation and handles nonlinear dependencies and continuous random values. The MI 
can indicate how useful the input parameter will be in predicting groundwater levels. The higher the MI between the 
input and target variable (groundwater levels), the more information is shared between the two variables. The input 
variable will have a high correlation with the groundwater levels and will be more informative in predicting the 
groundwater levels as the patterns the model learns from the input variable data set will be useful for predicting 
groundwater levels (Lee et al., 2016). If a low MI is recorded, then there is a low correlation, and little information is 
shared between the two variables. The input variable will be less informative for predicting groundwater levels. A low MI 
may also indicate that the input variable data set may be too noisy and the information from the input variable with 
respect to groundwater levels cannot be recorded. The MI between the groundwater levels and the target variable, 
helped to understand the groundwater level predictions made by the model.  
 
MI does not model the influence of the input variables on the target variable. The influence between the variables in the 
study should be simulated using probabilistic graphical modelling. An example of such a model is shown by Ajoodha and 
Rosman (2020), where a Bayesian network was used to learn the conditional probability distribution between all the 
features and the target variable.  
 

4.2.5 Scenario testing 

Once the developed models performed adequately, the established model was used to predict groundwater levels under 
hypothetical scenarios with adjusted rainfall and groundwater abstraction. To simulate groundwater predictions for 
scenarios one to three (Table 4-5) the models were trained using the original training dataset (80% of the time series). 
The test dataset for the input parameters were then altered accordingly in alignment with the selected scenario. For 
example, when groundwater level predictions were generated for scenario 1a (Table 4-5), the test data set (last 20% of 
the time series) of the rainfall time series was altered from the actual measured values to the values that mimic the 
scenario being tested. In scenario 1a the rainfall test dataset was generated by subtracting 100mm for any months with 
> 100 mm of rainfall during that month. The model will then use the input variable altered to mimic the scenario with the 
other input variables altered, based on what the model has learnt during training to make groundwater level predictions.  
 
The scenarios tested are summarised in Table 4-5 showing the shortened ID, name and description assigned to each 
scenario tested. Scenario 1 aims to simulate changes in rainfall intensity and overall reduction in the magnitude of rainfall. 
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Scenario 2 simulated an increase in groundwater abstraction. Scenario 3 simulates both a decrease in rainfall intensity 
and increase in abstraction.  
 
Scenario 4 tests the ability of the model to make long-term predictions. Scenario 4a aimed to test if the model is capable 
of making a 15-year prediction. The training to test split ratio was altered so that the model only trains on 50% of the 
available time series, and the remaining 50% is used to make groundwater level predictions. Only the train to test split 
ratio was changed and the input parameters were not altered in any way (i.e., the actual measured values for the input 
parameters were used).  Scenario 4b aimed to test the model’s ability to make a 30-year prediction. The complete data 
set (100%) of the actual measured values was used for model training. Groundwater levels were then predicted 30 years 
into the future using long-term averages for the input variables. The average for each month of the year was then 
repeated until a 30-year time series was created for each input variable.  
 
Table 4-5 Description of the scenarios applied to the developed models for the Steenkoppies aquifer 

Scenario ID Name Description  
1a Decrease rainfall 

intensity 
If monthly rainfall > 100mm then minus 100mm. No alteration to spring 
discharge, temperature and groundwater usage input variables. 

1b Increase rainfall 
intensity 

If monthly rainfall > 100mm then add 200mm. No alteration to spring 
discharge, temperature and groundwater usage input variables. 

1c Decrease rainfall Half the monthly rainfall. No alteration to spring discharge, temperature and 
groundwater usage input variables. 

2 Increase groundwater 
abstraction  

Double the monthly abstraction. No alteration to spring discharge, 
temperature and rainfall input variables. 

3 Simulate a worst-case 
scenario 

Combination of both scenario 1a and 2. No alteration to spring discharge and 
temperature variables. 

4a Long term prediction 
with reduced training 

Change in training/test split to 50%/50% to model a +/- 15-year prediction. 
No alteration to input variables. 

4b Long term prediction 
30 years 

100% data for training, predict groundwater levels for 30 years using long 
term averages of input variables.  

 

4.3 MODEL RESULTS 

4.3.1 Information gain ranking 

The contribution of each feature against the target variables (groundwater levels), following the method in section 4.2.3, 
is shown in Table 4-6. The first column indicates the borehole ID (BHID), and the remaining 5 columns indicate the feature 
names and the corresponding entropy scores to the target variable (groundwater level). Table 4-6 shows that total 
abstraction rate correlates with water levels the strongest in each borehole (entropy ranges from 0.48 to 0.69). Again, 
correlation does not imply causality, and this essentially shows that the method detects a correlation between the curve 
of increasing groundwater use over time with the groundwater levels at each borehole. The result is surprising as the 
groundwater levels are significantly noisier than the groundwater use.  
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Table 4-6 A ranking by entropy of each input feature against each target variable 

  BHID Temperature 
Rainfall 
trend 

Actual 
rainfall 

River 
Discharge 

Groundwater 
Abstraction 

0 D4N0037 0.01 0.36 0.05 0.45 0.61 
1 D4N0053 0.02 0.35 0.02 0.40 0.56 
2 D4N0065 0.01 0.29 0.05 0.38 0.57 
3 D4N0066 0.01 0.32 0.01 0.39 0.68 
4 D4N0092 0.04 0.39 0.02 0.43 0.53 
5 D4N0094 0.02 0.38 0.01 0.49 0.55 
6 D4N0108 0.05 0.33 0.04 0.37 0.58 
7 D4N0110 0.03 0.39 0.03 0.43 0.58 
8 D4N0112 0.02 0.37 0.05 0.38 0.57 
9 D4N0115 0.01 0.36 0.05 0.47 0.69 
10 D4N0116 0.04 0.33 0.03 0.32 0.48 
11 D4N0117 0.03 0.37 0.04 0.36 0.60 
12 D4N0123 0.03 0.37 0.05 0.38 0.67 
13 D4N0126 0.02 0.39 0.04 0.48 0.62 
14 D4N0127 0.01 0.32 0.05 0.35 0.69 
15 D4N0130 0.02 0.38 0.02 0.45 0.65 
16 D4N0139 0.02 0.32 0.01 0.49 0.61 
17 D4N0140 0.02 0.32 0.03 0.35 0.66 
18 D4N0141 0.04 0.37 0.06 0.32 0.65 
19 D4N0142 0.03 0.36 0.06 0.32 0.61 
20 D4N0146 0.00 0.40 0.06 0.45 0.60 
21 D4N0147 0.05 0.35 0.02 0.46 0.62 
22 D4N0687 0.06 0.37 0.06 0.52 0.60 
23 D4N0824 0.06 0.35 0.05 0.45 0.59 
24 D4N0832 0.06 0.29 0.03 0.42 0.54 
25 D4N0835 0.02 0.36 0.03 0.46 0.63 
26 2526CC00033 0.05 0.44 0.03 0.49 0.64 
27 2625BB00028 0.04 0.34 0.03 0.41 0.61 

 
The second most correlating feature with groundwater levels is discharge with an entropy ranging from 0.32 to 0.52. A 
strong relationship is expected, given that the hydraulic gradient between the surrounding aquifer and the eye is what 
drives discharge hence changes in groundwater level will directly translate to changes in discharge rate. The rainfall trend 
(described in section 4.2) is the feature with 3rd strongest correlation (0.29 to 0.45). The actual observed rainfall exhibits 
very low entropy scores (ranging from 0.01 to 0.06) due to the data being noisy when compared to the trend rainfall. Xu 
et al. (2020) looked at the decomposed signals of rainfall as inputs for forecasting rainfall and found that the decomposed 
signals of rainfall produced better predictions compared to actual measured rainfall. A similar observation is seen in this 
study. As would be expected, temperature has the lowest correlation (and therefore least influence in predicting water 
levels) with a maximum entropy of 0.06.  
 
It should be noted that MI only measures the mutual dependence between two random variables by identifying how 
much information of one of the features can be obtained from the other features, but it does not tell us what drives the 
groundwater levels.  
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4.3.2 Model training and testing  

The model results for the 28 boreholes are summarised in Table 4-7. While the model reports MAE values of less than 
0.40m for most of the boreholes, it reports MAE values of around 0.4m and 0.5m for six boreholes, and for borehole 
D4N0147, the model recorded the highest MAE value of 0.672m. Most of the R2 results between the predicted and the 
observed at all the borehole sites are above 0.5. Only five boreholes recorded R2 values of less than 0.5 with the lowest 
score from borehole D4N0140 which had an R2 of 0.341. The high MAE, MSE and RMSE scores of the predicted outcome 
at boreholes D4N0066, D4N0127, D4N0146, D4N0147, D4N0687 and D4N0824 demonstrate that the accuracy of the 
model outputs at these boreholes is questionable. Since the same structure of the LSTM model was used on all the 
boreholes the high errors in these boreholes might be caused by inaccurate input data or by other factors that might 
have a strong influence on the groundwater level fluctuations at these particular sites. A subset of the boreholes shown 
in Table 4-7 was selected to show a comparison of the predicted results versus the observed results (see Figure 4-12).  
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Table 4-7 LSTM model result metrics per borehole 

  BHID R-Squared  MSE RMSE MAE STDV 

0 D4N0037 0.73 0.02 0.12 0.10 0.02 

1 D4N0053 0.55 0.03 0.17 0.09 0.01 

2 D4N0065 0.58 0.03 0.16 0.13 0.02 

3 D4N0066 0.58 0.62 0.79 0.54 0.02 

4 D4N0092 0.65 0.09 0.30 0.23 0.03 

5 D4N0094 0.65 0.25 0.50 0.35 0.03 

6 D4N0108 0.80 0.05 0.23 0.16 0.02 

7 D4N0110 0.64 0.01 0.12 0.10 0.01 

8 D4N0112 0.27 0.01 0.11 0.08 0.02 

9 D4N0115 0.82 0.02 0.12 0.08 0.02 

10 D4N0116 0.85 0.08 0.28 0.20 0.02 

11 D4N0117 0.62 0.15 0.39 0.23 0.03 

12 D4N0123 0.74 0.12 0.35 0.21 0.03 

13 D4N0126 0.63 0.03 0.16 0.10 0.02 

14 D4N0127 0.73 0.46 0.68 0.47 0.03 

15 D4N0130 0.60 0.19 0.44 0.27 0.04 

16 D4N0139 0.68 0.12 0.35 0.23 0.02 

17 D4N0140 -0.34 0.04 0.19 0.18 0.03 

18 D4N0141 0.82 0.05 0.22 0.18 0.01 

19 D4N0142 0.81 0.03 0.18 0.13 0.01 

20 D4N0146 0.64 0.57 0.75 0.47 0.03 

21 D4N0147 0.42 0.63 0.79 0.67 0.03 

22 D4N0687 0.79 0.58 0.76 0.48 0.03 

23 D4N0824 0.52 0.37 0.60 0.54 0.06 

24 D4N0832 0.86 0.10 0.31 0.26 0.02 

25 D4N0835 0.32 0.08 0.23 0.21 0.10 

26 2526CC00033 0.29 0.20 0.45 0.22 0.03 

27 2625BB00028 0.80 0.10 0.31 0.18 0.02 

 Average 0.61 0.18 0.36 0.25 0.03 
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Figure 4-12 Comparison between the observed and predicted for 6 boreholes during training and testing phases. 
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Generally speaking, the observed and modelled groundwater levels are closely matched, with key features of the 
observed datasets replicated in the modelled data. As would be expected, for the training dataset the modelled 
groundwater level matches observed much more closely than the test, because the observed groundwater levels are 
used in training, i.e., groundwater level at the previous time steps largely dictates the predicted output. During test, the 
model only “sees” the modelled groundwater level rather than observed.  
 
Figure 4-12 suggests a good correlation between the predicted and observed values for boreholes D4N0141 and D4N0142 
which also exhibited high R2 values (0.823, 0.821 respectively) and low RMSE values (0.224, 0.183 respectively). Boreholes 
D4N0037 and D4N0127 performed reasonably well. For borehole D4N0127, the model seemed to under-predict values 
in the training set as compared to the test set. On the other hand, borehole D4N0146 seemed to over-predict 
groundwater level values which also explains why the borehole exhibited high error metrics (MSE: 0.565, RMSE: 0.751 
and MAE:0.456). Borehole D4N0110 seemed to under and over-predict groundwater level values throughout the test 
phase.  
 
Figure 4-12 also illustrates how outliers affect model performance. The model learns patterns from data during the 
training phase hence patterns which deviate from patterns previously seen decrease the overall performance of the 
model. This can be seen with boreholes D4N0146 and D4N0127 during the test phase. During the testing phase for 
borehole D4N0146, a high peak occurred during 2003 that was previously not seen in the training set hence the model 
was unable to accurately predict the peak which resulted in decreased model performance during the testing phase. 
RNNs generally perform better the more variability it sees during the training phase. This is evidenced by the three 
troughs seen in D4N0146. The model under-predicts the first two troughs but by the time it reaches the third trough the 
model is able to better predict the trough. In addition, the model is unable to pick up the variability seen in the test set 
for borehole D4N0127, because the training data is less representative of the test data (variability happening in test set 
is different from train set). Due to this high variability model errors also increase significantly with RMSE of 0.75 and MAE 
of 0.45 and the STDV is also significant (0.032 and 0.028 respectively) showing there is high variability in the test data.  
 
Boreholes with less variability perform sufficiently well evidenced by the low RMSE values for boreholes D4N0037 (0.124) 
and D4N0110 (0.119). Since the model was better able to learn and generalise with high variability data in the training 
phase for boreholes D4N0141 and D4N0142 the model was able to better predict the test sets which also why the STDV 
values for the two boreholes are quite low (0.014, 0.012 respectively).  
 
Key observations from the results include: 

 What is common across most boreholes for both the training and testing phase is the LSTM model is often unable 
to capture the minimum and extreme groundwater level peaks whenever they occur in a short timeframe. This 
is illustrated in Figure 4-12 where across all boreholes the model failed to reproduce the extreme minimums and 
maximum values of each borehole. For example, the minimum groundwater levels in 1990, 1995 and 1997 in 
D4N0141 and 1981 and 1982 in borehole D4N0146 are not captured. Similarly, extremes and short time scale 
fluctuations of groundwater levels are not well replicated as seen in 1982 for borehole D4N0110, 2002 for 
borehole D4N0146 and 1995 for borehole D4N0127. 

 In all cases the predicted groundwater level in test data is lagged behind the observed groundwater level. This 
is common in RNN model results and is related to the fact that the model is “looking” at the model output 
groundwater levels for the previous X number of time steps (X is user defined). The model combines this 
information (perhaps a declining trend) with new input data at the current time step. If the new data at the 
current time-step suggests that the decline is ceasing, and a peak of rainfall &/ discharge is approaching, the 
model has to make a decision on the modelled groundwater level based on this and the previous modelled 
groundwater level. It appears that the “looking backwards” at modelled groundwater level causes the modelled 
result to lag behind the influence of new parameters.   
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 The model fit statistics improve with the number of samples or length of dataset (i.e., R2 increases with 
number of samples).  

 The observed groundwater level has a dominant effect on the modelled groundwater level in training, 
demonstrated by the measurement recording error in the observed groundwater level for 2525DD00054, 
where data is shifted down by ~11m between 1981 and 1984, as well as in 2526CC00255 in 1986, and data 
appears shifted downwards in D4N0130 in 1981 – 1982. This data was not removed or corrected prior to 
modelling. The model is able to reproduce this data shift which because it is a measurement error is not 
represented in the discharge or rainfall input variables (and therefore a physically based model would not be 
able to reproduce). 

 Other variables (i.e., discharge and rainfall) do have some influence on modelled groundwater level, more so in 
the test dataset, as demonstrated by the fact that the modelled groundwater levels are able to fluctuate in the 
test dataset. This demonstrates that the modelled data is sufficiently influenced by the input parameters. 

 

4.3.3 Scenario testing 

Scenario testing (as per section 4.2.4) was performed for different time periods (ranging from 2 to 5 years) for the subset 
of boreholes mentioned in section 4.3.2.  
 
Scenario 1a – Precipitation (-100mm) 
Subtracting 100mm from rainfall events that had peaks higher than 100 resulted in a drop of groundwater levels at the 
specific month were precipitation was reduced. Only a few precipitation peaks above the 100mm threshold occurred 
during 2000 – 2004 (duration of test data for most boreholes). For this reason, the drop in groundwater levels is only 
seen at the particular months where rainfall was reduced. For boreholes D4N0142 and D4N0142, the decrease in water 
levels between year 0 and year 2 is clearly observed as rainfall events were reduced during this period. For borehole 
D4N0037, a decline in water levels is observed during year 2 to 3 as compared to Figure 4-12 where there is an over-
predicted value of groundwater levels in 2002. Borehole D4N0127 had only a single rainfall event that was above the 
threshold during the testing phase hence only one negative change was observed with a drop of 0.2m at the beginning 
of year 3. The general trend for the rest of the years remained similar to that shown in Figure 4-12. For boreholes 
D4N0110 and D4N0146, a decline in water levels (0.2 to roughly 0.4m) can be observed from year 0.  
 
Scenario 1b – Precipitation (+200mm) 
Similar to scenario 1a boreholes in this scenario showed an increase in groundwater levels in particular months where 
the rainfall event meets the required threshold for increase. The increase in precipitation clearly generates an increase 
in groundwater levels, seen more clearly in boreholes D4N0037, D4N0110 and D4N0146. The magnitude of the response 
in these boreholes is significantly higher than boreholes D4N0142 and D4N0141. For borehole D4N0127 the groundwater 
levels increase for year 3 yet remained almost stable for the remainder. Generally, in this scenario the groundwater levels 
increased by 0.6 to 1.3m.  
 
Scenario 1c – Precipitation (half) 
By halving all precipitation values in the test set, we can see a clear decline in groundwater levels for all boreholes 
presented in Figure 4-15. The decline in groundwater levels is consistent throughout the years since all precipitation 
values were halved unlike in scenario 1a (see Figure 4-13) where only specific rainfall events were tweaked hence the 
water levels only declined at particular months. The LSTM model is clearly able to predict the influence of precipitation 
on groundwater levels in the compartment, evidenced by the constant drop in water levels for all boreholes shown in 
Figure 4-15. 
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Scenario 2 – Abstraction doubled 
Doubling the regional abstraction rates in the compartment resulted in a significant decrease of groundwater levels 
(ranging between 0.5 to 1.7m) in the compartment. As can be seen in Figure 4-16, all boreholes had a significant decline 
in water levels. Although the doubled abstraction rates seemed to have a higher effect on boreholes D4N0110, D4N0141 
and D4N0142, the magnitude for boreholes D4N0127, D4N0037 and D4N0146 was much smaller.  
 
Scenario 3 - Abstraction doubled and precipitation reduced (-100mm) 
The highest change in groundwater levels was observed from the third scenario where regional abstraction was doubled 
and rainfall was reduced by 100mm at high precipitation events. All selected boreholes show a decline in groundwater 
levels as indicated in Figure 4-17. Groundwater levels for boreholes D4N0141 and D4N0142 dropped by almost 1m as 
observed in Figure 4-17. For boreholes D4N0037, D4N0127, D4N0110 and D4N0146 groundwater levels dropped by at 
least 0.5m. 
 
Scenario 4 – long term prediction 
For scenario (4a), the training sample size was reduced to see how the model would perform in a long-term prediction, 
whilst keeping all input variables the same. The performance is clearly worse than when more data used in training 
(compare Figure 4-18 and Figure 4-12 for the same borehole). Generally, with RNN models specifically the LSTM model, 
the more data you feed the model the better the model predictions. In scenario 4a the sample size was split in half giving 
the model less data to train and in scenario 4b the model was given full dataset to train on, in order to predict a longer-
term forecast. As can be seen when comparing the two predictions, the longer training data (30 years) produced a much 
better training result. In scenario 4a, the magnitude of the observed peaks and troughs are not well matched during 
training, and during the test period the predicted groundwater level tracks well below the observed in sections of the 
time series (particularly 1994 to 1999). However, the model was still able to generalise sufficiently, as post 1999 the 
predicted groundwater level comes closer to observed (rather than becoming progressively worse with an error 
accumulating), and an RMSE value of 1.075 is recorded. The input variables of precipitation and discharge appear to 
sufficiently influence the model prediction. The results for scenario 4a illustrate that the type of input data can at times 
have more influence than the quantity of input data since it was still able to generalize well with a shorter training sample.  
 
For the longer-term forecast (scenario 4b), precipitation, abstraction, temperature and discharge data were formulated 
by averaging the 30 years of data for each variable and predicting 15 years into the future. The results of scenario 4b 
(Figure 4-18) simply demonstrate that hypothetically it is possible to predict any duration into the future, with accuracy 
related to the length of training data.  
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Figure 4-13 Model prediction for scenario 1a, decrease rainfall peaks. 
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Figure 4-14 Model prediction for scenario 1b, increase rainfall peaks. 
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Figure 4-15 Model prediction for scenario 1c, decrease rainfall. 
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Figure 4-16 Model prediction for scenario, increase abstraction. 
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Figure 4-17 Results summary for Scenario 3. 
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4a. Long term prediction with reduced train set size 

 
4b. long term prediction (15years) 

 
Figure 4-18 Model prediction for scenario 4a and 4b, long term prediction for borehole D4N0037. 
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5 CASE STUDY 2: STEENKOPPPIES 
 

5.1 DESCRIPTION OF STUDY AREA (CONCEPTUAL MODEL) 

5.1.1 Location and setting 

The Steenkoppies compartment is situated west of Tarlton, South Africa (26°02'S to 26°13' S, 27°29' E to 27°39' E) and 
covers an area of approximately 312 km2 (Figure 5-1) (Holland 2009). The aquifer provides water primarily for productive 
local agriculture, including the largest producer of carrots for export in South Africa (Cobbing, 2017). The farms dependant 
on groundwater employ over 4000 people and have significant links to other sectors of South Africa’s economy (Cobbing, 
2017). 
 

 
Figure 5-1  Location of the Steenkoppies compartment boundary, relevant hydrology, meteorological stations 
and cities. (compartment boundaries from DWA 2009).  

 

5.1.2 Topography and Drainage and Land Use 

The topography in the Steenkoppies compartment is characterised by undulating plains (Vahrmeijer et al., 2013). The 
altitude of the Steenkoppies compartment varies from 1700 m above mean sea level (mamsl) in the south-east to 
1495 mamsl in the north and west of the compartment. The altitude dips down to an even lower altitude to 1200 mamsl 
at the flood plains of the Magalies River in the far north of the compartment (Figure 5-1). Besides the non-perennial 
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Brandvlei River, there are no surface water drainage features or wetlands in the Steenkoppies compartment (Figure 5-1). 
This indicates that most of the rainfall infiltrates directly into the aquifer (Vahrmeijer et al., 2013).  
 
Figure 5-2 shows land cover over the Steenkoppies compartment, according to the South African National Land-cover 
data set of 2018. From the south-west to the north-east of the Steenkoppies compartment, both pivot irrigated, and rain-
fed agriculture dominates. The south-east of the Steenkoppies compartment is occupied by residential settlements. 
Minor planted forest covers the south of the compartment. In the north of the Steenkoppies compartment, “commercial” 
dominates. The South African National Land-cover data set of 2018 defines “commercial” as the non-residential areas 
used for business and commerce. Overall, agricultural practices cover most of the in the Steenkoppies compartment. 
 

 
Figure 5-2 Land cover over the Steenkoppies aquifer (shapefile from the South African National Land-cover 
dataset of 2018 of the South African Spatial Data Infrastructure). 

 

5.1.3 Climate 

 

5.1.3.1 Rainfall 

South Africa is a semi-arid country, with highly seasonal and unevenly distributed rainfall (Vahrmeijer et al., 2013). The 
climate in the Steenkoppies compartment area is characterised by cool, dry winters and warm, wet summers with 80% 
of the rainfall occurring as thunderstorms (Seyler et al., 2016). This type of climate is typical of the South African highveld.  

 
Historical monthly rainfall data was acquired from a study by Holland et al. (2009). Extensive historical rainfall data are 
not recorded from meteorological stations in the Steenkoppies. Holland et al. (2009) therefore, compiled a representative 
monthly rainfall time series from 1908 to 2009 from four meteorological stations near to the Steenkoppies compartment, 
maintained by the South African Weather Service (SAWS) and the Agricultural Research Council (ARC).  All four stations 
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showed a similar mean annual precipitation (MAP) where the deviation between the stations was less than 10%. Holland 
et al. (2009) compiled the time series by calculating the weighted average (squared inverse distance weighting method) 
of all the monthly precipitation. This time series was augmented with data from the Tarlton station on the Deodar farm 
situated in the Steenkoppies aquifer (Figure 5-2) to create a final rainfall data set from October 1908 to October 2019, 
presented in Figure 5-3. A two-year moving average of the annual rainfall (grey dotted line) and the mean annual 
precipitation (MAP, red dotted line) is also presented.  
 
The annual rainfall recorded in the Steenkoppies compartment from 1909 to 2019 was the lowest in 1935 (323 mm) and 
the highest in 1929 (1081 mm) with a MAP of 669 mm. According to Vahrmeijer et al. (2013), the Steenkoppies region 
experienced two periods of meteorological drought from 1990-1994 and again from 2002-2007. These two drought 
events are apparent in the historical rainfall time series, with the moving average of the rainfall time series well below 
the MAP during these periods (Figure 5-2). Table 5-1 compares the MAP to the annual rainfall of four individual years 
showing the annual rainfall in 1994 was 87% of the MAP, while in 2004 the annual rainfall was only 73%. Table 5-1 further 
illustrates that there was another potential drought between 2015 - 2017 as the annual rainfall recorded in 2015 and 
2017 was 71% and 63% of the MAP, respectively.  
 
There appears to be a cyclical pattern in the rainfall recorded in the Steenkoppies compartment. Consecutive years of 
higher rainfall, above or near to the MAP, are followed by years of lower rainfall, below the MAP. The green and blue 
arrows demonstrate an example of high rainfall years and low rainfall years, respectively (Figure 5-2). Between 1966 and 
1981 the Steenkoppies compartment received consecutive years of higher rainfall. During this time only three years 
recorded rainfall slightly below the MAP and twelve years of rainfall is above the MAP.  From 1982-1986 the compartment 
received successive years of lower rainfall as all the years recorded annual rainfall below the MAP. The cycle was repeated 
with high rainfall in 1987-1989 and lower rainfall in 1990-1994. The moving average helps to visualise the cyclical pattern 
in the time series as it represents a smoothed-out rainfall curve. When the moving average is above the MAP one can 
distinguish years of higher rainfall and when it drops below the MAP the years of lower rainfall can be seen.  
 
The cyclical pattern does not repeat at fixed intervals throughout the entire time series, and the interval ranges from one 
to 15 years, with an average of 4 to 5 years, which is also illustrated in Figure 5-4, showing the monthly rainfall along with 
the trend of the monthly rainfall. In the last ten years, there has been a decline in the frequency of MAP above the 
average, and only nine months recorded rainfall above 100 mm in the last five years (2014 – 2019), compared to 16 
months of rainfall above 100 mm the previous five years (2009-2014). Groundwater levels in the Steenkoppies aquifer 
appear to increase when more than 100 mm rain falls in a month suggesting this is a threshold for recharge events 
(section 5.1.7). 
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Figure 5-3 Annual rainfall in the Steenkoppies compartment (grey bars). A two-year moving average (grey 
dotted line), and the Mean Annual Precipitation (MAP) (the red dotted line) are also represented—An example of high 
and low rainfall years are represented as the green and blue arrows, respectively.   

Table 5-1 Annual rainfall compared to the MAP in the Steenkoppies aquifer. 

Year Annual rainfall (mm) % of MAP 

MAP (1908-2019) 668  100 

1994 583  87 

2004 486  73 

2015 474  71 

2017 450  63 
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Figure 5-4 Monthly rainfall for the Steenkoppies aquifer (grey bars) and the trend of the monthly rainfall time 
series (blue line). 

5.1.3.2 Temperature 

A historical temperature dataset was acquired from the SAWS and the Agricultural Research Council (ARC). The two 
meteorological stations recording temperature closest to the wells in the Steenkoppies aquifer was the Tarlton station 
on the Deodar farm situated in the Steenkoppies aquifer at 26°08'33''S and 27° 34'27''E, and the Zuurbekom station 
approximately 30 km southeast of the Steenkoppies aquifer at 26°18'03''S and 27° 48'49''E (Figure 5-1). The Tarlton 
station recorded daily temperature from November 2003 to October 2019. The Zuurbekom station recorded daily 
temperature from January 1950 to August 2019.  
 
Although there is very little topography that could cause a considerable change in temperature over distance in the 
vicinity of the study area, a linear regression on the overlapping data between the Tarlton and Zuurbekom datasets 
(November 2003 to August 2019) was calculated to assess the correlation between temperatures recorded at these two 
stations. Between the two datasets, there is a high linear correlation (R2 score of 0.96). Both stations also showed a similar 
mean annual temperature where the deviation between the stations was less than 10%. The Zuurbekom data set can 
therefore be used as a realistic representation of the temperature in the Steenkoppies aquifer. The temperature in the 
Steenkoppies compartment has followed a consistent seasonal trend (Figure 5-5). In the spring and summer months 
(September - March) the mean monthly temperature fluctuated between 15°C - 24°C and in the autumn to winter months 
(April - August) fluctuated between 4°C - 19°C. This is according to data collected from a meteorological station in the 
Steenkoppies compartment maintained by the ARC (Figure 5-5). The twelve-month moving average in Figure 5-5 shows 
that the monthly average temperature increased from 1950 to 2019. Higher temperatures will cause higher 
evapotranspiration rates and lower soil water content (Döll, 2009), which may result in less water recharging the aquifer. 
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Figure 5-5 Mean monthly temperature in the Steenkoppies compartment (grey line) and the twelve-month 
moving average (blue line). 

5.1.4 Hydrology and spring flow 

The compartment lies within the quaternary drainage region A21F. The perennial spring, Maloney's Eye is situated 750 m 
south of the northern boundary of the Steenkoppies compartment at 1495 mamsl (Figure 5-1). The Maloney's Eye is 
located at the intersection of an east-west striking fault zone and Malmani Subgroup that is overlain by of a lower 
permeability unit, forcing the groundwater to the surface. The Maloney's Eye serves as the only natural significant outlet 
for the groundwater in the Steenkoppies compartment, and is the origins of the Magalies River, that feeds the 
Hartbeespoort Dam.  

River discharge data for the Maloney’s Eye Spring was obtained from gauge stations maintained by the DWS. From 1908-
2013 the monthly average discharge from Maloney's Eye spring varies from a low of 0.051 m3/s recorded in April 2007 to 
a high of 1.035 m3/s recorded in March 1979 (Figure 5-6).  

There are six major peaks in spring discharge in 1919, 1945, 1979, 1997, 2001 and 2011 (peaks are seen in both Figure 
5-6 and Figure 5-7). These peaks are related to the cyclical patterns described in the rainfall time series as the peaks 
coincide with the end of high rainfall years. The longer the period of high rainfall, the larger the peak in the spring 
discharge. For example, the highest average spring discharge peak was recorded in 1979 (1.01 m3/s) after a 15-year cycle 
of higher rainfall from 1966-1981 (Figure 5-7). The spring discharge peak in 2001 is much lower (0.43 m3/s) after only one 
year of high rainfall recorded from 2000-2001 (Figure 5-7).  

The most recent peak seen in the average spring discharge in 2011 is low (0.28 m3/s) although it follows a seven-year 
cycle of high rainfall between 2005 and 2012. It is uncertain whether this peak is related another external factor acting 
on the spring discharge such as groundwater abstraction in the Steenkoppies aquifer. Groundwater abstraction results 
in a decrease in discharge (Konikow and Bredehoeft, 2019). Vahrmeijer et al. (2013) used the cumulative rainfall 
departure (CRD) method to evaluate the relationship between rainfall and discharge and confirms that there is a 
reasonable correlation between rainfall and spring discharge. However, 1987 the actual measured discharge was lower 
than the simulated discharge from the CRD, indicating that other external factors not accounted for in the model (such 
as abstraction) influence the discharge from around 1987.  
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Figure 5-6 Monthly mean discharge recorded at the Maloney’s Eye Spring and monthly rainfall with the trend of 
the rainfall time series over time. 

 
Figure 5-7 Average annual spring discharge from the Maloney's Eye spring is represented as the blue line. Annual 
rainfall from nearby SAWS metrological stations is defined as the grey bars with a two-year moving average shown as 
the grey dotted line, and the Mean Annual Precipitation (MAP) is shown in red. 
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5.1.5 Geology 

The stratigraphy of the Steenkoppies compartment is outlined in Table 5-2. The Steenkoppies compartment comprises 
of the north to north-west dipping rocks of the Chuniespoort Group and Malmani Subgroup. The Malmani Subgroup is 
subdivided into chert-rich and chert-poor formations of which the chert rich formations form the higher-yielding aquifers 
(DWS, 2009).  The conglomerates and shales of the Rooihoogte and Timeball Hill Formations overlay the Malmani 
Dolomites and form the Northern boundary of the Steenkoppies compartment. The quartzites and shales of the Black 
Reef Formation lie beneath the Malmani dolomites and form the southern border of the Steenkoppies compartment. 
Mafic dykes intruded into the Malmani dolomites, the Tarlton East and Tarlton West Dyke, and create the eastern 
boundary of the compartment while the Eigendom Dyke forms the western border (Vahrmeijer et al. 2013). The 
Wolwekrans dyke intruded across the centre of the compartment with an east-west trend, however, is not thought to be 
a substantial barrier to groundwater flow. (Holland et al., 2009).   
 
Table 5-2 Stratigraphy of the Gauteng and North West dolomites (Source: Vahrmeijer et al. 2013). 

 

5.1.6 Groundwater levels and flow direction  

For this study, historical groundwater level data was requested from the NGA and HYDSTRA databases. Majority of the 
boreholes in Steenkoppies compartment are situated in the north-west of the compartment. Fewer boreholes are located 
in the north-east and south-east of the compartment and even less boreholes in the south-west of the compartment 
(NGA and HYDSTRA boreholes used for modelling are shown in Figure 5-8, along with the positions of registered 
groundwater use from WARMS).  
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Figure 5-8 Position of NGA and HYDSTRA boreholes used for modelling in the Steenkoppies aquifer, along with 
abstraction points registered in WARMS. 

Monthly groundwater level time series recorded from boreholes in the Steenkoppies compartment are shown in Figure 
5-9. The groundwater levels in the Steenkoppies compartment range from approximately -82 magl to -29 magl. A similar 
trend and timing of the groundwater level increases and decreases in response to rainfall are recorded throughout the 
compartment (Figure 5-9), although each borehole shows a different magnitude of response.  

The fluctuations in the groundwater level time series coincide with the rainfall cycles outlined in Figure 5-4. A selection 
of six groundwater level time series is shown with the monthly rainfall and the monthly rainfall trend (Figure 5-10). The 
peaks and the troughs in the groundwater levels represent a slightly delayed version of the monthly rainfall (Figure 5-10) 
and strongly mimic the rainfall trend.  
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Figure 5-9 Monthly groundwater levels recoded from boreholes in the Steenkoppies compartment. 

 

Figure 5-10 Monthly groundwater level (left axis) and monthly rainfall with the trend (right axis) over time.  
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Figure 5-11 shows the six groundwater level time series with the monthly mean spring discharge from the Maloney’s Eye. 
The conceptual hydrogeological model of Holland et al. (2009) described the flow of groundwater in the Steenkoppies 
compartment as towards the north to discharge at the Maloney’s Eye. The Maloney’s Eye spring is the only natural outlet 
for the groundwater in the Steenkoppies compartment. Since the hydraulic gradient between the surrounding aquifer 
and the Maloney’s Eye is what drives spring discharge, groundwater level changes will directly translate to changes in the 
spring discharge rate. This is also confirmed in the historical time series (Figure 5-11). The pattern of the spring discharge 
time series is very similar to the groundwater level time series (Figure 5-11). The spring discharge records significant 
peaks in 1997, 2001 and 2011, which coincide with the increases in the groundwater level time series. The spring 
discharge represents a response to the fluctuations in the groundwater levels throughout the compartment.  

 

 

Figure 5-11 Monthly groundwater level (left axis) and monthly spring discharge (right axis) over time. 

Table 5-3 shows a summary of the groundwater level data sets used for modelling in the Steenkoppies compartment as 
well as the rainfall and spring discharge data sets. The majority (13 out of the 18 boreholes) record declining groundwater 
levels. The spring discharge and rainfall time series also record declining trends. The declining in groundwater level and 
spring discharge has been related to the impact of sustained and growing abstraction across the compartment (section 
5.1.8) but will also be impacted by the decline in rainfall. 
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Table 5-3 Summary of the groundwater level (GWL) time series in the Steenkoppies. A summary of the monthly rainfall and spring discharge time series is given. (The units 
for the rainfall and spring discharge time series differ from the heading and shown in the table.) 

Borehole ID Latitude Longitude Start date Start GWL 
(magl) 

End date End GWL 
(magl) 

Years Active Trend Trend Gradient Annual increase 
(m) 

A2N0566 -26.07665 27.57651 1990/06 -58.16 2017/10 -59.88 27 decline -0.0002 -0.06 
A2N0553 -25.90942 25.89306 1985/05 -66.37 2017/10 -65.4 32 incline -0.0002 0.03 
A2N0610 -26.08706 27.58199 1989/04 -60.05 2017/10 -61.85 28 decline -0.0002 -0.06 
A2N0610 -26.05231 27.65417 1986/03 -45.60 2016/02 -55.26 29 decline -0.0005 -0.33 
36349 -26.10025 27.64812 1986/01 -50.3 2017/10 -43.59 31 incline 0.0002 0.22 
A2N0617 -26.09555 27.578611 1989/04 -61.61 2006/08 -63.55 17 decline < -0.0005 -0.11 
A2N0612 -26.08129 27.57433 1989/09 -55.14 2017/10 -56.81 28 decline -0.0002 -0.06 
A2N0616 -26.08089 27.56255 1989/09 -68.56 2017/10 -70.5 17 decline -0.0002 -0.11 
A2N0615 -26.07671 27.61508 1989/09 -68.65 2017/10 -70.32 28 decline -0.0002 -0.06 
A2N0614 -26.0818 27.57062 1989/09 -67.73 2017/09 -69.08 27 decline -0.0002 -0.05 
A2N0608 -26.08549 27.5976 1989/09 -70.81 2005/08 -72 15 decline 0.0003 -0.08 
A2N0568 -26.09776 27.57742 1986/01 -61.29 2007/02 -65.61 21 decline -0.0002 -0.21 
A2N0567 -26.07711 27.57643 1986/01 -57.99 2007/07 -61.33 21 decline -0.0001 -0.16 
37773 -26.08122 27.56661 1987/07 -68.26 2017/10 -70.32 30 decline -0.0002 -0.07 
A2N0554 -26.05302 27.62917 1986/05 -80.34 2001/08 -79.39 15 incline < 0.0003 0.06 
A2N0563 -26.04796 27.57273 1986/05 -65.51 2002/07 -65.32 16 incline < 0.0003 0.01 
A2N0565 -26.07643 27.57467 1986/01 -58.02 2000/09 -58.02 14 decline < -0.0005 - 
A2N0569 -26.09134 27.60041 1986/06 -75.44 2000/07 -75.01 14 incline < 0.0003 0.03 
Rainfall - - 1908/10 105,6 mm 2019/10 0,25 mm 111 decline < -0.0005 -3,59 mm 
Spring 
discharge 

-26.02236 27.56336 1908/10 0,36 m3/s 2017/10 0,2 m3/s 99 decline <-0.0005 -0,002  m3/s 
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5.1.7 Recharge 

The primary source of recharge to the groundwater in the Steenkoppies aquifer is from rainfall (Cobbing et al., 2016). 
Recharge for the Steenkoppies compartment ranges from 9% to 21% of the mean annual precipitation (Holland et al., 
2009). The graphs of groundwater level demonstrate that groundwater levels are influenced and recharged by rainfall 
(e.g., Figure 5-10). Another source of recharge in the Steenkoppies compartment is the effluent discharge from the 
Randfontein Sewage Works, and return flow from irrigation (Cobbing et al., 2016). 

Vahrmeijer et al. (2013) describe how there is an exponential relationship between rainfall and recharge to the aquifer 
in the Steenkoppies compartment. Moderate recharge occurs during average rainfall events; however, during increased 
rainfall events, the recharge to the aquifer increases disproportionately to the increase in rainfall. After sustainaed rainfell 
events sufficient soil moisture would already be acquired with sizeable monthly rain, increasing the hydraulic conductivity 
and maximising infiltration of rainfall to the aquifer (Vahrmeijer et al., 2013).  Analysis of the data showed that monthly 
rainfall greater than 100 mm result in significant recharge to the aquifer (increase in groundwater levels).  
 

5.1.8 Abstraction 

The Water use Authorisation and Registration Management System (WARMS) data set records a total registered 
groundwater use of 78 million cubic meters per annum (million m3/a) from the Steenkoppies compartment (Table 5-4). 
The dominant water use sector is agricultural for both irrigation and livestock irrigation using a total of 39.36 and 37.03 
million m3/a, respectively (Table 5-4). This makes up 76% of the total registered groundwater use in the Steenkoppies 
aquifer. 
 
Table 5-4 Registered groundwater use on the Steenkoppies compartment (WARMS, 2019). 

Water use sector Number 
registrations 

Groundwater use 
(million m3/a) 

Percentage of total 
usage 

Agriculture (irrigation) 180 30.81 39.36 

Agriculture (watering livestock) 12 28.99 37.03 

Mining 1 0.06 0.08 

Industry (urban) 3 11.07 14.14 

Industry (non-urban) 3 7.35 9.39 

total 199 78.28 100.00 

 
Groundwater use data was gathered from various literature, reports and surveys by Seyler et al. (2016) (Table 5-5 and 
Figure 5-12). The data set compiled by Seyler et al. (2016) reported slightly higher groundwater usage in the Steenkoppies 
compartment compared to the WARMS data. A sharp increase is recorded in the WARMS data set from 9.75 to 19.05 
million cubic meters per annum (million m3/a) in 1999, and the literature data set shows an increase in groundwater 
abstraction from 13.45 to 25.55 million m3/a in 1996 (Figure 5-12). The groundwater usage data from literature also 
indicates a rise in groundwater usage in 1986 from 3.95 to 13.45 million m3/a. The earliest start date for registrations in 
the WARMS data set is 1988 for the Steenkoppies compartment, and therefore it is not a representative dataset for 
earlier groundwater use. The stepwise increases in both the WARMS and literature dataset are likely related only to 
inaccuracies in the datasets, rather than related to actual increases in groundwater use, and a more gradual increase is 
likely. 
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Figure 5-12 Groundwater usage in the Steenkoppies compartment. The dotted line represents registered 
groundwater (WARMS, 2019), the solid line represents groundwater usage from literature (Seyler et al., 2019). 

Table 5-5 Groundwater usage in the Steenkoppies aquifer estimated from literature (Seyler et al., 2019). 

Reference Year Abstraction (million m3/a) 

Hobbs (1980) 1980 3.95 

Bredenkamp et al (1986) 1986 13.45 

Barnard (1997) 1997 19 

Schoeman and Partners (2016) 1998 25.55 

Schoeman and Partners (2016) 2015 29.92 
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Figure 5-13 Monthly spring discharge (left axis) and groundwater usage in the Steenkoppies compartment (right 
axis). 

 
Figure 5-14 Monthly groundwater levels (left axis) and groundwater usage in the Steenkoppies compartment 
(right axis). 
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5.2 NNAR MODEL SET UP 

5.2.1 Model software and approach 

The nnetar function in the forecast package (Hyndman and Athanasopoulos, 2014) in R (R Core Team, 2017) is used to fit 
the NNAR model to the time series. The nnetar implements the NNAR model using a neural network with a sigmoid 
activation function, a single hidden layer and lagged inputs for forecasting the target variable. Figure 5-15 summarises 
the applied approach taken to model and predict groundwater levels using the NNAR. The approach is similar to that 
applied for the LSTM and a more detailed explanation of the approach is given in section 4.2.2.2. 
 
The first 80% of the target and input time series is used for training and the last 20% is used for testing. During training 
the nnetar function automatically selected the number of lagged inputs for forecasting through hyper-parameter tuning. 
Once the model had been trained and the hyper-parameters optimised for the dataset, the model is ready to make 
predictions. There is an element of randomness in the predictions. Therefore, as mentioned in section 4.2.2.2, the model 
makes groundwater level predictions 10 times, and the average of these 10 predictions is calculated and the model 
performance is assessed using this average prediction.  
 

 

Figure 5-15 The applied methodological approach taken to model and predict groundwater levels.  

5.2.2 Model input variables 

In this study, the relationship between the target variable (groundwater levels) and the input variables (rainfall river 
discharge, temperature and groundwater usage) was used to assist predictions (as per section 4.2.3.2). Similar to section 
4.2.2, the input parameters were deemed appropriate as they each have a relationship with the target groundwater 
levels. The relationship between the target groundwater level and each input variable in the Steenkoppies aquifer is 
outlined in section 5.1.  

Similar to that described in section 4.2.2 for the LSTM, the NNAR model could not detect the relationship between rainfall 
and groundwater level in the aquifer as the raw rainfall time series dataset was too noisy. Therefore, STL time series 
decomposition was performed, and the trend of the rainfall was extracted and used as an input to model time series. The 
original time series and the trend of the time series is shown in Figure 5-16. 
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Figure 5-16 The actual rainfall and the trend of the rainfall over time. 

5.2.3 NNAR model pipeline 

The same cross-validation approach was implemented for modelling Steenkoppies with NNAR as for the Grootfontein 
case study with the LSTM, which is discussed in section 4.2.3.2.  The data gaps in the input and target time series were 
interpolated linearly as per section 4.2.3.3.  The model evaluation criteria used to assess the performance of the NNAR 
model in this Steenkoppies case study is the same as that used to evaluate the performance of the LSTM used in the 
Grootfontein case study discussed in section 4.2.3.4.  

5.2.4 Information Gain Ranking  

The methodological approach used to calculate the information Gain Ranking in this Steenkoppies case study is the same 
as that used in the Grootfontein case study discussed in section 4.2.4.  

5.2.5 Scenario Testing 

Scenario modelling for Steenkoppies was performed in the same way as that in Grootfontein; refer to section 4.2.4 for 
the methodological approach taken to perform scenario modelling. 

5.3 MODEL RESULTS 

5.3.1 Information Gain ranking 

The measures of mutual information (MI) for the five input variables with respect to groundwater levels in the 
Steenkoppies compartment, with the mean ( ) and standard deviation (sd), are presented in Table 5-6. In the 
Steenkoppies compartment, spring discharge recorded the highest MI with respect to groundwater levels (  = MI 0.78, 
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sd = 0.09) signifying that among all the input variables, spring discharge is the most informative input variable to 
predicting groundwater levels. A strong relationship was expected, given that the hydraulic gradient between the 
surrounding aquifer and the Maloney’s Eye is what drives spring discharge (Holland et al., 2009). Hence, changes in 
groundwater level directly translate to changes in the spring discharge rate. 
 

Recharge from rainfall causes an increase in groundwater levels in the Steenkoppies compartment (Holland et al., 2009). 
Groundwater levels are a muted version of the monthly rainfall, and the peaks and troughs seen in the groundwater 
levels correspond to the cyclical pattern seen in the rainfall (see Figure 5-10). It was, therefore, expected that rainfall 
would be one of the variables with a higher MI with respect to groundwater levels. However, a low MI between the 
rainfall and groundwater levels was recorded (  = 0.04, sd = 0.04).  This result prompted the use of the rainfall trend (the 
decomposed version of the rainfall time series) as an input variable. Using decomposed signals of a time series, such as 
the trend, is common practice in machine learning (e.g., Xu et al., 2020). The rainfall trend showed a more informative 
output (  = 0.42, sd = 0.09). This indicates that the information shared between the rainfall data set and groundwater 
levels were not detected due to the noise in the rainfall time series. Only larger rainfall events (> 100mm per month) 
recharge the aquifer and correlate with groundwater level increases. Whilst smaller rainfall events (< 100 mm per month) 
were not informative with regards to groundwater levels (section 5.1.7). The smaller rainfall events could, therefore, 
have been detected as noise and distorted the ability of the MI to pick up the relationship that exists between 
groundwater levels and rainfall. This confirms that the trend of the rainfall time series should be used as a model input 
over the actual rainfall time series as it is a more informative input variable for predicting the groundwater levels. 
 
Groundwater abstraction is the third most informative variable with respect to groundwater levels in the Steenkoppies 
compartment (  = 0.37, sd = 0.07). Whilst it is suspected that sustained groundwater use across the compartment has 
contributed to an overall decline in groundwater levels (section 5.1.6), whether this pattern would be detectable in the 
models was uncertain before undertaking the research given the nature of the groundwater use data, and the 
comparatively noisy groundwater level. However, the results show there is a degree of information shared between the 
groundwater level and groundwater usage dataset.  
 
The temperature has the lowest MI with respect to groundwater levels (  = 0.02, sd = 0.02) and therefore, shares the 
least amount of information with groundwater levels compared to the other four input features. Similar to a study by 
Wunsch et al. (2018), the temperature time series was used as a substitute for evapotranspiration. This was because the 
evapotranspiration recorded for the Steenkoppies aquifer held only five years’ worth of data, enabling this dataset to be 
used as a model input. Temperature and evapotranspiration are positively correlated. It is expected that an increase in 
the temperature will drive higher evapotranspiration (Döll, 2009). As per the water balance equation, there is a 
correlation between evapotranspiration and groundwater levels, as increased evapotranspiration contributes to a 
decrease in groundwater storage (represented as a decrease in groundwater levels) (Healy et al., 2007).  
 
Although an increase in temperature is recorded in the Steenkoppies compartment (section5.1.3.2), a low MI recorded 
show that temperature (substitute for evapotranspiration in this study) was not informative for the groundwater levels 
in the Steenkoppies aquifer. This may be attributed to the fact that most of the rainfall in the Steenkoppies compartment 
occurs as thunderstorm events (Seyler et al., 2016). During thunderstorm events, atmospheric temperature drops, and 
evapotranspiration reduces (Gulliver et al., 2010). Furthermore, evapotranspiration is a complex process and involves 
other factors such as vegetation type, irrigation schedules, soil types etc, which contribute to there being a low MI 
between groundwater levels and temperature.   
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Table 5-6 The mutual information (MI) of each input feature with respect to the target variable (groundwater 
levels). 

 
Borehole ID Temperature Rainfall trend Rainfall River Discharge Groundwater 

Abstraction 
1 A2N0566 0.01 0.39 0.02 1 0.4 
2 A2N0553 <0.01 0.21 0.06 0.5 0.26 
3 A2N0556 0.05 0.29 0.05 0.54 0.2 
4 36349 0.06 0.35 0.09 0.46 0.33 
5 A2N0610 <0.01 0.49 0.04 1 0.34 
6 A2N0568 <0.01 0.5 0.07 0.74 0.36 
7 37773 <0.01 0.39 0.02 0.59 0.35 
8 A2N0554 <0.01 0.37 <0.01 0.73 0.38 
9 A2N0567 0.06 0.41 0.05 1 0.45 
10 A2N0569 0.02 0.53 <0.01 0.81 0.46 
11 A2N0608 <0.01 0.48 0.01 0.89 0.51 
12 A2N0612 0.01 0.44 0.01 0.86 0.37 
13 A2N0614 <0.01 0.36 0.04 0.72 0.34 
14 A2N0616 <0.01 0.35 0.06 0.65 0.41 
15 A2N0617 <0.01 0.53 <0.01 0.96 0.33 
16 A2N0563 0.02 0.5 0.09 1 0.38 
17 A2N0615 <0.01 0.38 <0.01 0.59 0.35 
18 A2N0565 0.05 0.52 0.15 1 0.44  

Mean ( ) 0.02 0.42 0.04 0.78 0.37  
Standard 
deviation 
(sd) 

0.02 0.09 0.04 0.19 0.07 

 

5.3.2 Model training and testing 

This section shows the results of the NNAR model to simulate (training) and predict (test) groundwater levels from 18 
boreholes in the Steenkoppies compartment. The statistical performance of the NNAR model to predict groundwater 
levels across 18 boreholes in the Steenkoppies compartment was assessed using five error indices which are presented, 
along with the mean ( ) and standard deviation (sd), in Table 5-7. The performance of the NNAR was also assessed visually 
and the graphical results from six boreholes are displayed and discussed in this chapter, and the additional 12 graphs are 
presented in Appendix B. 
 
The error indices indicate that the performance of the NNAR varied between the boreholes (Table 5-7). The coefficient 
of determination (R2) varied considerably across all 18 boreholes (  = 0.19 and sd = 1.78). Although R2 ranged from 0 to 
1, five of the 18 models predicted groundwater levels with a negative R2. The reason for this lies within the computation 
of the statistic. R2 compares the fit of the chosen model against the mean of the observed data as a horizontal straight 
line (null hypothesis) (Moriasi et al., 2007). If the NNAR fits worse than the horizontal straight line, then a negative R2 is 
obtained. The performance of the NNAR model showed relatively low errors across the 18 models for the remaining 
metrics (MAE, MSE, RMSE). The majority of the models predicted groundwater levels with acceptably low errors, well 
below 1 m, and only four models recorded errors greater than 1 m (Table 5-7). 
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In this study, low R2 values do not necessarily correlate with high error values (MSE, RMSE and MAE). For example, 
although borehole A2N0553 recorded a higher R2 value (better result) compared to borehole A2N0556, the MAE, MSE 
and RMSE recorded higher error metrics for borehole A2N0553 compared to A2N0556 (Table 5-7). In addition, boreholes 
with low and negative R2 values do to replicate groundwater levels relatively well when inspecting the graphs. Wunsch 
et al. (2018) used NARX to model groundwater levels. Similarly, Wunsch et al. (2018) also found that high R2 values did 
not always correlate with the other error metrics used in the study, namely a low RMSE and high Nash Sutcliffe values. 
This highlights the importance of incorporating multiple error indices for assessing model accuracy. 
 

Overall, according to the statistical performance metrics, the NNAR model performed best in predicting groundwater 
levels from borehole A2N0568 (R2 = 0.81, MSE = 0.09, RMSE = 0.30, MAE = 0.23) and performed the worst predicting 
groundwater levels from borehole 36349 (R2 = -1.19, MSE = 23.04, RMSE = 4.75, MAE = 4.03).  
 
Table 5-7 Summary of the metrics used to assess NNAR performance.  

 Well ID R2 MSE (m) RMSE (m) MAE (m) STDV across ten model 
runs 

1 A2N0566 0.49 0.05 0.23 0.19 <0.01 
2 A2N0553 0.20 6.50 2.54 2.14 <0.01 

3 A2N0556 0.05 4.01 2.00 1.67 <0.01 
4 36349 -1.19 23.04 4.75 4.03 0.65 

5 A2N0610 0.60 0.06 0.24 0.19 0.04 
6 A2N0568 0.81 0.09 0.30 0.23 0.04 

7 37773 0.41 0.08 0.28 0.24 <0.01 
8 A2N0554 -0.16 0.27 0.52 0.42 0.02 

9 A2N0563 0.76 0.05 0.22 0.15 <0.01 
10 A2N0565 -1.70 0.05 0.22 0.18 0.01 

11 A2N0567 0.56 0.09 0.29 0.24 0.04 

12 A2N0569 -0.31 0.06 0.25 0.20 0.02 
13 A2N0608 -6.93 4.21 1.98 1.77 0.15 
14 A2N0612 0.47 0.06 0.25 0.21 <0.01 
15 A2N0614 0.14 0.16 0.40 0.37 <0.01 
16 A2N0615 0.25 0.13 0.36 0.30 <0.01 
17 A2N0616 -0.07 0.16 0.39 0.33 <0.01 
18 A2N0617 0.59 0.16 0.40 0.28 0.02  

Average -0.40 1.91 0.73 0.61 0.07 
 Standard 

deviation 
1.78 5.54 1.28 1.03 0.21 

 
Graphically it is clear that the groundwater level predictions made by the NNAR model vary depending on the nature of 
the target groundwater level time series (Figure 5-17). Similar to the statistical performance (Table 5-7), the graphs 
showed the best groundwater level predictions made by the NNAR for borehole A2N0568 and the worst predictions 
made were for groundwater levels from borehole 36349 (Figure 5-17). 
 
The predictions made by the NNAR underestimated the groundwater level peaks from boreholes A2N556, A2N553, 36349 
and A2N0568, indicating that the NNAR had difficulties in predicting extreme events (Figure 5-17). This observation 
suggests that the transformation applied to the data did not entirely remove the local variations in the function being 
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mapped as the data was negatively skewed (Sudheer et al., 2003). As per the model pipeline, the data was transformed 
before training and testing. This was done to scale all the variables to the same range and to convert the data to a normal 
distribution. However, it seems that even after transformation, the target variable still had a slight negative skew (tail 
towards lower values) and as a result, the NNAR matched that pattern to minimize errors causing an underestimation in 
the groundwater levels.  
 
The NNAR model gave the best predictions of the observed target groundwater levels when the test data set was 
representative of the training data set. Artificial Neural Network (ANNs), like the NNAR, use the training data to learn the 
patterns and relationships in the datasets (Agrawal and Adhikari, 2013). Therefore, if the fluctuations and patterns in the 
test data are very different to the training data, then the model will struggle to make predictions as it would not have 
seen groundwater level patterns like those in the test data set (Crowther and Cox, 2005). The more similar the test dataset 
is to the training dataset, the better the model can predict. This is demonstrated for borehole A2N0568 (Figure 5-17). 
The fluctuations in the observed groundwater levels of the training dataset (1987/09 to 1995/12) are very similar to the 
fluctuations in the observed groundwater levels in the test data set (2004/03 to 2006/11). The model very accurately 
predicted groundwater levels in this borehole A2N0568 (R2 = 0.81, MSE = 0.09, RMSE = 0.30, MAE = 0.23). The model 
would have learnt the predictive rule from the patterns during training and therefore, was able to make accurate 
predictions when a similar pattern occurs in the test data. However, in reality, training and test datasets will not always 
have similar patterns, which highlights the importance of informative input variables to assist predictions. 
 

When modelling using ANNs like the NNAR, each input variable is chosen as it provides information that facilitates the 
prediction of the target variable (Lee et al., 2016). Therefore, the stronger the relationship between the input variable 
and the target variable, the more useful and informative the input variable is, and the better predictions can be made by 
the model (Lee et al., 2016). The NNAR models produced more accurate groundwater level predictions in boreholes 
where there was a stronger relationship between the groundwater levels and the input variables. This is evident in the 
groundwater level predictions made at borehole A2N0566 and A2N553 (Table 5-7 and Figure 5-17). The MI of each input 
feature with respect to groundwater levels for borehole A2N0566 was higher than for borehole A2N553 (Table 5-6). As a 
result, the model was able to make better groundwater level predictions at borehole A2N0566 compared to borehole 
A2N553.  
 
The NNAR model showed overfitting at borehole 36349 (Figure 5-17). Overfitting is when a model fits extremely closely 
to the training data resulting in a model that has learnt to reproduce noise and peculiarities in the data and fails to learn 
the general predictive rule (Wickham, 2016). Overfitting causes the accuracy of the model to deteriorate when predicting 
anything outside the range of conditions that occurred during the training period (Zanotti et al., 2019). Normally, 
overfitting is avoided by training using cross-validation, as implemented in this study, however, from the 18 groundwater 
level time series modelled, the NNAR model still showed overfitting in one model (Figure 5-17). The NNAR model fitted 
almost exactly to all the peaks and troughs in the groundwater level training data for borehole 36349. The model then 
made poor groundwater level predictions (R2 = -1.19, MSE = 23.04, RMSE = 4.75, MAE = 4.03) (Table 5-7). Zanotti et al. 
(2019) proposed that as an alternative to cross-validation, the parameters such as the weights and bias, and the number 
of neurons in the hidden layer of the model should be altered to avoid overfitting. Different activation functions or 
architectures of the neural network could also be changed to reduce overfitting when it is seen to occur (Zanotti et al., 
2019). 
 
The groundwater level predictions made by the NNAR were slightly lagged outputs compared to the observed 
groundwater levels. These lags are clearly seen in the model results of similar studies that made use of autoregressive 
models (e.g., Wunsch et al., 2018; Guzman et al., 2017), however no explanation is provided in these studies. The lags 
could have been a result of the recurrent/autoregressive nature of the NNAR, since the NNAR used lagged inputs to make 
predictions (Hyndman and Athanasopoulos, 2014), the model observed previous values to make predictions and 
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therefore, outputs a lag in the predictions.  The model results additionally demonstrated that the NNAR could be used as 
a useful tool to fill gaps in the data sets. There was a 6-month data gap in groundwater levels recorded at borehole 
A2N0566 in 2008, which as per the methods was interpolated linearly (Figure 5-17). Using the input variables, the NNAR 
model was able to simulate a more realistic groundwater level for that period.  
 

A2N0566 

  

A2N553 

A2N556 

 

36349 

 
A2N0610 

  

A2N0568 

 
Figure 5-17 Comparison between the observed and simulated groundwater levels for six boreholes in the 
Steenkoppies compartment, during training and testing phases. 

The Standard deviation between the ten independent runs of six models is shown graphically in Figure 5-18. These 
results show how ANNs, like the NNAR, produce slightly different predictions each time the model is run. This is because 
the model weights are chosen at random at the start of model training and then updated using the data so that the 
overall predictive error is minimised (Zhang and Hu, 1998).  The standard deviation of the predictions across the ten 
model runs is low for borehole A2N0566, A2N553, A2N556, as the upper and lower limit of the standard deviation 
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matched closely to the average predicted groundwater levels across the ten model runs (Figure 5-18). The model 
predictions did not deviate substantially across the ten model runs.  
 
In some cases, the standard deviation across the ten model runs increases with time (Figure 5-18 graph A2N0610 and 
A2N0568), due to the accumulated error in model prediction. Since the model feeds back the predicted groundwater 
levels at previous time steps as an input into the model, there is an accumulated error as the models predict further into 
the future (the problem of vanishing gradients) (Scardapane and Wang, 2017). 
 
For borehole 36349, the standard deviation across the ten model runs is large throughout the groundwater level 
predictions (Figure 5-18). This may be attributed to the fact that the model over-fits to the data during training (Figure 
5-17). Therefore, the model is unable to generalise to predict the new test data. This ultimately resulted in significant 
variability in the predictions made across the ten model runs, as the model had learnt to reproduce noise and peculiarities 
in the data and fails to generalise to new data.  
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Figure 5-18  Standard deviation error between ten independent runs of each model used to predict the 
groundwater levels for six boreholes. 

5.3.3 Scenario testing 

Scenario 1a and c mimicked a reduction in rainfall. Scenario 1a simulated a reduction in rainfall events over 100 mm 
(subtracted 100 mm from monthly rainfall over 100 mm) and scenario 1c simulated reduction in all rainfall events 
(monthly rainfall halved). For scenarios, 1a and c, the NNAR model simulated a decrease in groundwater levels at 
boreholes A2N553, A2N556 and 36349 (Figure 5-19 and Figure 5-20). At these three boreholes, the model recognised the 
decrease in the rainfall and reacts accordingly by simulating a decrease in groundwater levels.  
 
The models for boreholes A2N0566, A2N0610 and A2N0568 did not show a significant change or drop in the simulated 
groundwater levels for scenarios 1a and 1c (in both Figure 5-19 and Figure 5-20). The model simulated groundwater levels 
similar to the observed groundwater levels suggesting rainfall has a minor influence in the modelled groundwater level. 
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This may be due to the very high MI recorded between spring discharge and groundwater levels at these boreholes (Table 
5-6). The MI between spring discharge and groundwater levels at boreholes A2N0566, A2N0610 and A2N0568 was 1, 1 
and 0.74 respectively (Table 5-6). The model, therefore, did not depend on the other input variables to make groundwater 
level predictions as the information in the spring discharge time series dominated the predictions. 
 
Figure 5-21 shows the model results for scenario 1b, where the peaks in rainfall over 100 mm were amplified (200 mm 
added to monthly rainfall over 100 mm). Similar to that described for scenario 1a and c, the model for boreholes A2N553, 
A2N556 and 36349 are influenced by the increased rainfall fed into the model and react accordingly. The model simulated 
an increase in groundwater levels above the observed values. Boreholes A2N0610 and A2N0568 did not show a significant 
change or increase in the simulated groundwater levels for scenario 1b. The model simulated groundwater levels similar 
to the observed groundwater levels at these boreholes as the model does not recognise the increase in rainfall. Once 
again, this can be attributed to the strong MI between spring discharge and groundwater levels recorded at these 
boreholes.  
 
The strength in the relationship between the input variable and target variable drives whether the groundwater level 
responds to the scenario, but also drives the magnitude of the response. For example, in borehole A2N0566 of Figure 
5-21, the simulated groundwater levels rise by less than 1 m, whereas in borehole A2N553, the groundwater levels rise 
by up to 4 m. The model can pick up the influence of the rainfall at borehole A2N553 better than at borehole A2N0566. 
The hydraulic properties (the hydraulic diffusivity) of the aquifer are heterogeneous and impact the magnitude of the 
response to rainfall, along with variability in the recharge rate itself. Fractures in the rock, different soil types, vegetation 
types and other factors allow for more or less recharge to enter the aquifer in the Steenkoppies compartment. It would 
therefore be expected that different boreholes have different relationships with rainfall.  
 
Figure 5-22 shows the effect of scenario 2, increased abstraction, on the groundwater levels (abstraction doubled). It is 
suspected that groundwater use across the Steenkoppies compartment has contributed to a decline in groundwater 
levels (Vahrmeijer et al., 2013). If this is true, then the models should simulate a decrease in groundwater levels for 
scenario 2. It was uncertain whether the pattern between groundwater levels and groundwater usage would be 
detectable given the data set available for groundwater use (a stepwise increase in abstraction with time). For boreholes 
A2N556, 36349, and A2N0610 (Figure 5-22) the model simulates groundwater levels 1-3 m lower than that of the 
observed groundwater levels. The correlation between increased groundwater abstraction and decreasing groundwater 
levels was detected.  For boreholes A2N566 and A2N553 (Figure 5-22), the model recognises change, but it results in 
subduing the fluctuations in groundwater level change, since the groundwater usage data for the time period of the 
scenario is flat. The groundwater levels simulated at borehole A2N0568 do not change from the observed groundwater 
levels. This indicates that the model is unable to pick up the influence in groundwater abstraction for this borehole.   
 
The scenario testing was done to show the potential of the model to predict groundwater levels for the future. Many 
studies (e.g., Tapoglou et al., 2014; Lee et al., 2014) have predicted groundwater levels for scenarios of change using 
forecasted climate change data. The results from this study show that this would be possible with the NNAR in the 
Steenkoppies compartment. The NNAR model adequately recognised the relationships between the input variables 
(excluding abstraction) and groundwater levels. The NNAR was clearly able to recognise there is a change and produces 
predictions that make sense according to hydrogeological knowledge and the knowledge of the Steenkoppies 
compartment (outlined in 5.1). 
 
The long-term predictions in Figure 5-23 for scenario 4a demonstrate the impact of reducing the size of the training data 
set on model accuracy. The model could sufficiently predict groundwater levels for the first two years (2002-2004), 
however, after that the model accuracy decreased and the simulated output of the model does not match the observed. 
The small size of the training data set does not allow for the model to sufficiently “learn” the patterns seen in the test 
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data set. ANNs Like the NNAR can optimise the model parameters required to model groundwater levels (hyper-
parameter tuning) and the predictions made vary based on the data used to train the model (MacKay, 2005; Wickham, 
2016). This flexibility power in the model comes at the cost of requiring a lot more training data. Often predictions made 
by ANNs continue to improve the more data they train on (MacKay, 2005).  
 
Scenario 4b used the long-term averages of the input variables to predict a long-term forecast of groundwater levels 
(results shown in Figure 5-23). This is merely a demonstration to show that it is possible to use the NNAR to make long-
term predictions greater than 30 years. The result also shows that the more data available for training, the further one 
can predict, for example, a 30-year prediction could be made if approximately 120 years’ worth of data were available 
and an 80% to 20% training to test split ratio was chosen to ensure reliable model predictions.  
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Figure 5-19 Model prediction for scenario 1a, decrease rainfall peaks. 
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Figure 5-20 Model prediction for scenario 1c, halved monthly rainfall. 
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Figure 5-21 Model prediction for scenario 1b increase rainfall peaks. 
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Figure 5-22 Model prediction for scenario 2, increase groundwater abstraction.  
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Figure 5-23 Model prediction for scenario 4a and b long term prediction at borehole A2N553. 
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6 GENERALISABILITY OF MODELS 
 
The generalisability of a model is a measure of its successful application to data sets other than the one used for training 
and testing. Insufficient data hampered attempts to implement these ML models in Ramotswa TBA Ramotswa. Whilst 
there are 139 boreholes within the Ramotswa Dolomite area, the maximum length of data readings was 9 readings 
(compared to the ~240 used in this study). Therefore, to test generalisability, the LSTM was used to model 3 groundwater 
level datasets from the Steenkoppies compartment and the NNAR was used to model 3 groundwater level datasets from 
the Grootfontein compartment. In doing this, the generalisability of the two models was tested, albeit in very similar 
settings (similar rapid response to rainfall events), and with similar data structures (monthly datasets).  

6.1 GENERALISABILITY OF THE LSTM TO MODEL  

To test the generalizability of LSTM model the same model pipeline developed for the Grootfontein aquifer was tested 
with three datasets from the Steenkoppies compartment. The boreholes chosen show different characteristics as 
compared to the Grootfontein boreholes. For example, two of the chosen boreholes show a more muted groundwater 
level sequence with less sudden fluctuations as compared to the Grootfontein boreholes, and only one shows similar 
rapid fluctuations to those in the Grootfontein aquifer.  
 
Table 6-1 shows a summary of the LSTM model results when compared to the NNAR model when modelling Steenkoppies 
data. The LSTM model produced less error rates and higher r-squared scores as compared to the NNAR model for 2 out 
of the 3 boreholes. The LSTM model performs better in the Grootfontein compartment than in Steenkoppies. Borehole 
A2N0553 had the lowest error scores and the highest r-squared of the tested boreholes. On average the 3 boreholes 
recorded R2 values of 0.61 with the LSTM model and -0.06 with the NNAR model. Similarly, the boreholes also recorded 
MAE scores of 0.22 for the LSTM as compared to 2.13 for the NNAR model.  
 
The NNAR model was able to model the peaks and troughs present in the Steenkoppies more closely than the LSTM 
model for boreholes 36349 and A2N0568 (Figure 6-1). During the training phase borehole A2N0553 performed similarly 
to the NNAR predictions (under-predicting or over-predicting the peaks and troughs) but during the test phase the LSTM 
model outperformed the NARX model as it modelled the observed more closely. Furthermore, the declining trend shown 
in borehole A2N0568 was unable to be modelled well by the LSTM model.  
 
Table 6-1 Comparison between the performance of the LSTM and the NNAR to predict groundwater levels in the 
Steenkoppies aquifer (the NNAR model was developed for the Steenkoppies). 

 BHID NNAR 
R2  

LSTM 
R2  

NNAR 
MSE 

LSTM 
MSE 

NNAR 
RMSE 

LSTM 
RMSE 

NNAR 
MAE 

LSTM 
MAE 

1 36349 -1.19 0.63 23.04 0.08 4.75 0.28 4.03 0.21 

2 A2N0568 0.81 0.45 0.09 0.14 0.30 0.37 0.23 0.31 

3 A2N0553 0.20 0.74 6.50 0.03 2.54 0.17 2.14 0.14 

 Average -0.06 0.61 9.88 0.08 2.53 0.27 2.13 0.22 
 
 



Machine Learning Models for Groundwater Availability 111 
 

Figure 6-1 Comparison between the observed and predicted groundwater levels for 6 boreholes during training 
and testing phases. 

6.2 GENERALISABILITY OF THE NNAR TO MODEL GROUNDWATER LEVELS IN THE GROOTFONTEIN COMPARTMENT  

To test the generalizability of NNAR model, the same model pipeline used to model groundwater levels in the 
Steenkoppies compartment was used to model groundwater levels in the Grootfontein compartment. Table 6-2 
compares the performance of the NNAR and the LSTM to predict groundwater levels from three boreholes in the 
Grootfontein compartment. The NNAR modelled groundwater levels from the Grootfontein aquifer with a greater error 
compared to the LSTM. Across all four performance metrics in Table 6-2, the LSTM outperforms the NNAR and is able to 
make better groundwater level predictions across all three boreholes. The R2 score for groundwater level predictions 
made by the NNAR model is negative whereas for the LSTM the lowest R2 recoded is 0.64 for borehole D4N0110. The 
error metrics (MSE, RMSE and MAE) calculated from the predictions made by the NNAR are five to ten times higher than 
those from the LSTM.  
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Machine Learning Models for Groundwater Availability 112 
 

Figure 6-2 shows the predicted groundwater levels for 6 boreholes during training and testing phases. The predictions 
made by the NNAR (simulated test) do not match the observed groundwater levels and graphically confirm the poor 
predictions made by the model shown in Table 6-2. The NNAR is particularly unable to model the sharp peaks recorded 
in the groundwater level time series. This may be because the peaks are sharp and sporadic throughout the timeseries. 
The NNAR model requires the pattern, in this case the sharp peaks, to occur more frequently in the training data in order 
to “learn” and optimise the model hyper-parameters accordingly to predict the pattern in the test dataset. In all three 
boreholes in Figure 6-2 the groundwater level time series has infrequent sharp peaks in the training data that is not 
captured by the model. The predictions therefore do not capture the peaks either.  
 
Table 6-2 Comparison between the performance of the NNAR and the LSTM to predict groundwater levels in the 
Grootfontein aquifer.  

 BHID NNAR 
R2  

LSTM 
R2  

NNAR 
MSE  

LSTM 
MSE 

NNAR 
RMSE 

LSTM 
RMSE 

NNAR 
MAE 

LSTM 
MAE 

1 D4N0110  -8.05 0.64 3.35 0.01 1.83 0.12  1.46 0.1 
2 D4N0127  -5.41 0.73 1.83 0.46 1.35 0.68 0.88 0.47 
3 D4N0141  -21.94 0.82  0.49 0.05  0.70 0.22  0.56 0.18 
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Figure 6-2 Comparison between the observed and predicted groundwater levels for 6 boreholes during training 
and testing phases. 

6.3 CONCLUSION  

The LSTM model was used to make predictions on the groundwater levels in the Steenkoppies compartment and the 
NNAR model was used to make groundwater level predictions in the Grootfontein compartment. Thus, each model 
developed was used to model a completely different dataset using the same model pipeline.  
 
The LSTM model was able predict groundwater levels in both the Steenkoppies and Grootfontein compartment with 
higher accuracies than the NNAR model except for borehole A2N0568 in the Steenkoppies aquifer where the NNAR model 
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outperforms the LSTM.  The NNAR model was unable to capture the underlying patterns of the boreholes present in the 
Grootfontein compartment. The reason for the LSTM to better generalise can only be related to datasets modelled and 
the internal functioning of the model. 
 
The NNAR exhibited greater strength on a dataset with less peaks and troughs hence its performance on the Grootfontein 
boreholes was quite poor as the groundwater levels in the Grootfontein compartment show more sporadic sharp 
fluctuations. The model results of the NNAR in the Grootfontein compartment highlight the ability of the NNAR to model 
specific datasets and this could be due to the internal structure of how the model operates. On the other hand, the results 
of the LSTM model simulations show the ability of the model to capture the broad patterns of the Steenkoppies data so 
we can reasonably argue that the LSTM model is more likely to be generalizable as compared to the NNAR.  
 
Both the LSTM and the NNAR models are sub-types of the RNN as both models use current and previous timestamps to 
make predictions, however the internal functioning and behaviour of the models is quite different (refer to section 3.3.4 
and 3.3.5). Unlike the LSTM which stores previous time steps in the output gate,  the NNAR’s previous timestamps are 
given as another input to the model (Izady et al., 2013). Hence, the internal memory of the LSTM allows the model to 
better “learn” and memorize the relationships in the datasets and use that to make more accurate predictions making 
the model more generalisable as compared to the NNAR.  
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7 SUMMARY AND WAY FORWARD  
 

7.1 FRAMEWORK FOR A SUSTAINABLE GROUNDWATER STRATEGY 

The approach to sustainable groundwater use that is spelled out by the Sustainable Groundwater Strategy requires 
quantification of the current and expected changes in the groundwater balance or flows in the basin related to planned 
or potential groundwater use, which must include changes in storage, inflows and discharges. The relationship between 
abstraction and aquifer fluxes must be established. These predictions of future impact of abstraction are relied upon to 
set sustainable management criteria, which requires close collaboration with stakeholders in the basin (including the 
regulators or responsible authority). In line with CDWR (2014), the overall aim of the SGS is to ensure groundwater is 
managed to avoid the following six undesirable results: 
 

1. Chronic lowering of groundwater levels indicating a significant and unreasonable depletion of supply if 
continued over the planning and implementation horizon.  

2. Depletions of interconnected surface water that have significant and unreasonable adverse impacts on 
beneficial uses of the surface water. 

3. Significant and unreasonable degraded water quality, including the migration of contaminant plumes that impair 
water supplies.  

4. Significant and unreasonable land subsidence that substantially interferes with surface land uses.  
5. Significant and unreasonable seawater intrusion.  
6. Significant and unreasonable reduction of groundwater storage. 

 
Each of the six undesirable results are related to an equivalent sustainability indicator, which are the “six effects caused 
by groundwater conditions occurring throughout the basin that, when [the effects are] significant and unreasonable, 
represent undesirable results” (CDWR, 2017, pg. 26). The six indicators are: 

1. Lowering of groundwater levels 
2. Surface water depletion 
3. Degraded groundwater quality 
4. Land subsidence 
5. Seawater intrusion 
6. Reduction of storage 

 
The framework for the SGS outlines the steps required to establish the expected impacts of abstraction, set thresholds 
for the indicators, establish the necessary monitoring protocol to ensure the thresholds are not exceeded, and implement 
and update the strategy.  The authority mandated as responsible for management of water resources in the area would 
be the appropriate body to implement the strategy, i.e., the Department of Water and Sanitation (or the Catchment 
Management Agencies) for South Africa, or the Department of Water Affairs in Botswana.  
 

7.2 APPLICATION OF MACHINE LEARNING MODELS IN HYDROGEOLOGY 

The machine learning model aims and research questions (section 3.2) were explored through applying and testing 
various models and approaches. Findings on the applicability and shortcomings of various models only became clear 
through attempting to implement them. The models that were applicable to the task at hand and yielded useful results 
are presented in this report.  
 
Numerical models are used in groundwater resources assessments to predict groundwater conditions including 
groundwater levels and aquifer – wide fluxes such as discharge to surface water, for adjusted stresses such as increased 
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abstraction, reduced recharge. The research attempted to see if ML models can do the same (see ML model aims, section 
3.2).  
 
Ability to predict groundwater level 

 Contrary to requiring a variety of input data that is often unknown (or estimated) for groundwater level 
prediction, such hydraulic properties and aquifer geometry, the developed models use only measured data for 
the model input variables. Both models (NNAR and LSTM) were able to learn the dependencies between the 
sequential data series and demonstrated reliable performance in groundwater level forecasting in both 
Steenkoppies (see Table 5-8 ) and the Grootfontein (see Table 4-7) dolomitic compartments.  

 The results presented therefore demonstrate that data driven models can successfully predict groundwater level 
values. However, testing showed this is only the case if the training dataset is representative of the test dataset 
Patterns in the test set which deviate from patterns previously seen in the training set decrease the overall 
performance of the model. For example, the models are seen to perform better on the peaks and troughs only 
when several peaks and troughs were previously seen during model training. This has implications suggesting 
the models would not be able to accurately replicate the groundwater level response to novel changes or system 
shocks, such as several peak rainfall events that are out of range of the previous data. Furthermore, aspects that 
are not considered in the model, such as land use changes that impact on recharge rates and impact the 
relationship between rainfall and groundwater level would not be replicated. 

 The predictions for groundwater levels (i.e., the test datasets) are relatively successful when training datasets 
are longer, demonstrated particularly by the results to scenario 4a. The more data you feed the RNN the better 
the performance because the longer training periods allow for greater variability to be seen during the training 
phase which make for better predictions in the test phase. However, if the input data represents the target 
variable well (i.e., there is a very strong correlation between an input and target variable) then the input 
variables could have more influence in the accuracy of predictions, than the quantity of the input data (as 
observed in section 4.2.4).  

 The purpose of groundwater model development is generally to test the response of the groundwater system 
to stresses that have not yet occurred, i.e., changing abstraction of recharge. To test the model’s capabilities in 
predicting groundwater levels for different stresses, four scenarios were chosen, and recharge and abstraction 
adjusted. The results revealed that the models were able to pick up the influence of a certain change in a 
variable, by generating predicted water level values that differed from the base case. For example, halving 
recharge in both models generates a decline in groundwater levels. The LSTM model was able to show clearer 
declines or increases in groundwater levels (based on scenario) than the NNAR model.  

 Mutual information was calculated between each feature and the target variables (see section 4.3.1 and 5.3.1). 
In both study areas, the discharge dataset represented a more important variable than rainfall data in predicting 
groundwater levels. The strong relationship between discharge and groundwater levels is the reason why the 
models are able to perform in the long-term forecasts without deviating significantly from the observed 
groundwater levels, even with a significantly smaller training dataset (see Figure 4-18a). In cases where 
discharge is not a measured or known parameter, groundwater level prediction would rely on rainfall only then 
model performance could decrease. Furthermore, for scenario modelling, the future rainfall can be estimated, 
but groundwater discharge is a product of groundwater levels and so would not be known in a future scenario 
test. So, whilst these models can predict scenarios into the future, those demonstrated here (scenario 4) used 
averaged discharge which un-naturally controls the result. Taking discharge out of the scenarios as a parameter 
and essentially driving the prediction based on rainfall and abstraction only would be appropriate and reduce 
the accuracy.   

 The implication is also that using ML models to predict groundwater levels may be less feasible in an aquifer 
setting where discharge data is not available, and the relationship between groundwater levels and rainfall is 
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weaker or much more muted (i.e., confined aquifer settings, or aquifers in arid areas with highly episodic 
recharge). 

 The models developed have demonstrated that it is certainly possible to accurately fill short-term groundwater 
level data gaps at least in dolomitic terrains where spring discharge data closely matches the groundwater levels 
and in areas where there is a strong correlation with rainfall. The timescale over which this would be feasible 
depends on the amount of other data that is available to train the model; so generalisations are not possible. In 
these models with ~20-30 years of training data and a strong correlation with both discharge and rainfall data 
gaps of up to 5 years can confidently be filled. 

 
Generating aquifer fluxes and the translation from borehole to aquifer scale 
The research aims require assessment of aquifer-scale processes (widespread causing a gradual and consistent lowering 
of groundwater levels in monitoring boreholes across the basin) and therefore cumulative groundwater abstraction 
across the whole aquifer was incorporated in the models. The models train based on a pattern between datasets, and 
the NNAR model was unable to “see” a pattern between the gradually increasing groundwater use, and the groundwater 
levels, to the extent that adjusting abstraction rates in the scenario tests generated inconsistent results in the 
groundwater levels. Furthermore, to be able to quantify the impacts of changed abstraction rates once dynamic 
equilibrium is reached, the model would need to provide the projected groundwater level in response to one constant 
abstraction rate (higher or lower). This type of calculation does not rely on pattern recognition but quantification of 
physical process, and it is unlikely that ML models could ever be able to improve upon the numerical modelling tool that 
is available for this.   
 
The research aims require assessment of aquifer-scale processes, however, point data (from boreholes) must be relied 
on to provide indications of aquifer-scale processes. Input data for the ML models was a mixture of borehole-scale data 
(groundwater levels) and aquifer-scale data (rainfall assumed to be applicable across the area, abstraction across the 
entire compartment; discharge from the whole aquifer). A model was developed for each borehole, because the response 
to rainfall is different at each borehole and model trains on the data at that borehole and the “hidden layer” or “black 
box” of the model will memorise a pattern specific to that borehole.  In cases where there is sufficient spread of boreholes 
across an aquifer, the groundwater level response at every borehole could be predicted for future scenarios, and the 
predictions interpolated to generate a piezometric surface, and used to calculate aquifer storage, thus translating from 
models of borehole scale to aquifer scale interpretations.  
 
The ML models can predict anything for which there is a pattern and so if training data is directly available for aquifer 
fluxes, these can be predicted regardless of whether the data represents the borehole verses aquifer scale. To test this, 
the modelling inputs and outputs were reversed, and discharge predicted based on groundwater levels at several 
boreholes in both the NNAR and LSTM models. This test demonstrated it is equally feasible to predict discharge rates 
(refer to Kanyama et al, 2020 for a description of this test for the Grootfontein case). To predict future aquifer discharge 
based on adjusted rainfall (or abstraction rates) it would be feasible to use adjusted rainfall to predict the impact on 
future groundwater levels (with discharge removed from the predictive model), and then predict discharge based on the 
modelled future groundwater levels.  This two-step approach allows for the fact that future groundwater levels and 
future discharge would change based on that input rainfall / use changing. However, whilst this prediction of aquifer scale 
processes is methodologically feasible, the ability of the ML models to predict into the future, and to predict the correct 
magnitude is questionable.  
 
The Grootfontein case study results do detect the impact of changing groundwater use in future scenarios on 
groundwater levels (which could in turn be used to predict future discharge for those groundwater levels), however the 
Steenkoppies case study was (more understandably) unable to detect a strong correlation between use and groundwater 
levels, and as such changing use in the scenario predictions had little impact. It is seemingly unlikely that ML models can 
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be used to quantify the relationship between increased abstraction and aquifer fluxes demonstrated by the graph in Box  
2-2. It would rely on a relationship being detected between a curve of increasing groundwater use (or even sustained use 
at one abstraction rate) and groundwater levels and aquifer fluxes, already detected in the training dataset; it is therefore 
an inapplicable approach for under-utilised aquifers or where abstraction has not yet commenced. It cannot therefore 
be used for example in mining greenfield sites where numerical modelling is also relied upon to give the same outputs.  
 
It is also extremely difficult to determine (without a numerical model for verification) whether the magnitude of the 
prediction generated by the hidden layer is physically accurate. The magnitude is based on the training dataset, which 
shows (for the Grootfontein case) a range of groundwater levels and discharge rates for the historically increasing 
groundwater use. We do not know however whether the aquifer is at dynamic equilibrium (in groundwater levels and 
discharge) to the current abstraction rates or that shown by the data. Entering this data to a numerical model, and then 
running it forward for another 50 years, may show continued groundwater level and discharge decline for no future 
increase in abstraction, simply due to some of the current abstraction coming from storage. These dynamics cannot be 
accommodated in ML models. 
 
One advantage of the approach in ML models is that recharge does not need to be quantified. Rainfall is simply used, and 
the hidden layer (black box model) can work out how the groundwater level responds to rainfall.  For future scenarios 
we therefore do not need future recharge, only future rainfall (perhaps easier to generate, from climate models). This 
only applies if there is no system change / system shock such that groundwater levels start to respond differently to 
recharge i.e., land use changes significantly. 
 
Hydrogeological insights  
Due to the low confidence associated with the forward predictions for Grootfontein (on varying rainfall and groundwater 
use) and for Steenkoppies (for varying rainfall; groundwater use predictions are not feasible), it is not possible to provide 
new insights for hydrogeological functioning of these two case studies that can inform sustainable groundwater 
management in the areas.  The analysis presented here shows a long-term decline in rainfall in the areas over the same 
time period as the decline in groundwater levels yet in both areas the decline in groundwater levels has been attributed 
to groundwater use. Seyler et al 2016 quantify the relationship between abstraction rate and reduced discharge at 
Steenkoppies, for scenarios at dynamic equilibrium (hence for long term averaged recharge), however previous work has 
not quantified the degree to which groundwater use verses reduced recharge has contributed to the groundwater level 
decline over the previous ~ 30 years (feasible with a transient numerical model scenarios).  It is important for the 
management of these two aquifers that the relationship between groundwater use and aquifer fluxes be quantified and 
the relative influence of rainfall and abstraction on current groundwater levels be understood.  
 

7.3 WAY FORWARD 

 
Recommendations for sustainable groundwater use – implementing the SGS 
The SGS represents the idealised best-practice approach to achieving sustainable groundwater management that this 
project recommends is implemented for TBAs. It is acknowledged that full implementation of the SGS would require 
legislation to be amended, and more detailed guidance documents.  Therefore, similarly to California, whilst the actions 
in the SGS are necessary to achieve sustainable groundwater use, and could be particularly powerful for TBAs, they are 
unlikely to be fulfilled in their entirety until legislation is amended. 
 
Recommendations for data management in TBAs 
The partnership had initially hoped to test whether big data approaches could be used within a decision-support system 
for improving groundwater management in TBAs.  It is not possible to automate the analyses hydrogeologists need to do 
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in order to provide the technical information on which to base decisions controlling sustainable groundwater use.  If the 
SGS was implemented in its entirety in a basin, then subsequent to this, an automated system would be feasible that 
ingests real time monitoring data and flags to a manager when the threshold for a set sustainability indicator is breached. 
But it is not possible to bypass the basic requirement of an automated system; such a system relies on a hydrogeological 
analysis of predicted impact, and on thresholds being established, and relies entirely on a monitoring network being in 
place (i.e., boreholes, stream gauges, weather stations).  
 
The programme has piloted new approaches (theme 2, 3 and 4 have tested machine learning methods in different 
applications) and generated prototypes (theme 1 contributed to updating the IGRAC GIP database). Known groundwater 
data-related shortcomings have again been highlighted through these projects, including lack of groundwater monitoring 
infrastructure; the lack of access to data that is available and the associated lack of mandate for sharing data; the lack of 
data for actual groundwater use (rather than licensed use); and the lack of a single platform for data. The research 
illustrates that some data challenges can be overcome i.e., data patching for missing groundwater levels, and the use of 
coding to automate processing data from differing formats. But, to really further develop the use of big data in SADC, the 
fundamental data generation and data accessibility problem must be resolved. A centralised groundwater database 
accessible to all is required, ideally to include all SADC countries. This is required before any automated decision-support 
system can be considered.  
 
Recommendations for further testing of machine learning applications for modelling groundwater  
The models developed have been optimised for the case studies applied. The generalisability of the models was tested 
to demonstrate that these model pipelines can be applied in different settings. It is worth testing the application of ML 
models in a greater number of other settings, to verify some of the model implications listed in section 7:   

 Similarly structured data (and also regional behaviour) from a different aquifer system perhaps with a much 
more muted response to rainfall, such as aquifers in the Karoo, or confined aquifers from elsewhere. 

 Data structured very differently such as 3-hourly groundwater levels from a pumped borehole, with abstraction 
at that same borehole. Due to the time scale the groundwater level fluctuation will be dominated by the 
pumping rates (which could be off or on at a relatively constant rate), with little influence from rainfall / recharge 
at the 3-hourly timescale, and perhaps no discharge measurement depending on the aquifer case study selected. 
Whether machine learning models can recognise the pattern between the pump on/off signal, and this be 
enough to generate a typical pumped response in the groundwater level would be a worthwhile test.  

 
Recommendations for implementing ML models in groundwater 
Based on the ability of the models to fill data gaps, it is recommended that: 

 ML modelling is adopted as an approach by the groundwater community, with close guidance from computer 
scientists, to improve groundwater datasets 

 DWS initiates a project to fill data gaps in the NGA and HYDSTRA databases, with this data earmarked as 
“modelled”. More complete datasets would significantly benefit other researchers, and other analyses such as 
numerical modelling. 

 
It is also recommended that ML modelling be considered for the following uses in groundwater studies: 

 Understanding causal impacts with Bayesian models (Ajoodha and Rosman, 2020) 
 Predicting the impact of rainfall variability on groundwater levels at individual boreholes. In situations where 

there are sufficient numbers of boreholes across an aquifer, developing a model per borehole (if each has 
sufficient historical data), and predicting the impact per borehole can allow this data to be interpolated and the 
impact on the whole aquifer groundwater table derived. 
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 Projecting response in a pumped borehole to changes in the pumping regime (although accuracy and magnitude 
of predicted response is uncertain where the change in pumped regime may be significantly different from 
something seen previously)  

 
Recommendations for developing capacity in ML models for groundwater science 
Expertise in machine learning modelling (specifically RNNs) for time series groundwater data is a niche area in which 
there is currently extremely limited expertise in South Africa. Applying ML for hydrogeology is truly multi-disciplinary, 
and wrong turns during the research process highlighted that there is a risk that hydrogeologists implement ML models 
without the necessary computer science input and apply models outside of their real purpose. Vice versa is also true with 
a risk of computer scientists mis-interpreting the physical meaning of the output from machine learning models.  
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9 APPENDIX A 
 
Table 10-1 The statistical and graphical results of the LSTMs performance to simulate and predict groundwater 
levels from each modelled borehole in the Grootfontein compartment. The standard deviation for the model 
predictions across the ten model runs is also presented. 

Metrics D4N0112 

 

R2 0.266 
MSE 0.012 

RMSE 0.108 

 

MAE 0.084 
STDV 0.021 

Metrics D4N0117 

 

R2 0.615 
MSE 0.148 

RMSE 0.385 

 

MAE 0.230 
STDV 0.027 

Metrics D4N0127 
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R2 0.725 

 

MSE 0.459 

RMSE 0.676

 

MAE 0.473 
STDV 0.032 

Metrics D4N0146 

 

R2 0.642 
MSE 0.565 

RMSE 0.751 

 

MAE 0.465 
STDV 0.028 

Metrics D4N0147 
R2 0.421 
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MSE 0.628 

 
RMSE 0.788

 

MAE 0.672 
STDV 0.033 

Metrics D4N0066 

 

R2 0.578 
MSE 0.619 

RMSE 0.787 
MAE 0.541 
STDV 0.021 

Metrics D4N0116 
R2 0.848 
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MSE 0.08 

 
RMSE 0.284 

 

MAE 0.197 
STDV 0.017 

Metrics D4N0037 

 

R2 0.734 
MSE 0.016 

RMSE 0.124 

 

MAE 0.102 
STDV 0.023 

Metrics D4N0065 
R2 0.578 
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MSE 0.027 

 
RMSE 0.163

 

MAE 0.126 
STDV 0.02 

Metrics D4N0139 

 

R2 0.684 
MSE 0.121 

RMSE 0.347 

 

MAE 0.226 
STDV 0.018 

Metrics D4N0140 
R2 -0.341 
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MSE 0.037 

 
RMSE 0.19 

 

MAE 0.177 
STDV 0.031 

Metrics 2526CC00033 

 

R2 0.288 
MSE 0.2 

RMSE 0.447 

 

MAE 0.216 
STDV 0.026 

Metrics 2625BB00028 
R2 0.803
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MSE 0.095 

 
RMSE 0.307 

 

MAE 0.177 
STDV 0.02 

Metrics D4N0141 

 

R2 0.823 
MSE 0.051 

RMSE 0.224 

 

MAE 0.176 
STDV 0.014 

Metrics D4N0092 
R2 0.653 
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MSE 0.093 

 
RMSE 0.304 

 

MAE 0.233 
STDV 0.029 

Metrics D4N0094 

 

R2 0.649 
MSE 0.25 

RMSE 0.499 

 

MAE 0.353 
STDV 0.025 

Metrics D4N0832 
R2 0.862 
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MSE 0.096 

 
RMSE 0.309 

 

MAE 0.258 
STDV 0. 021 

Metrics D4N0687 

 

R2 0.789 
MSE 0.578 

RMSE 0.76 
MAE 0.477 
STDV 0.025 

Metrics D4N0130 
R2 0.604 
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MSE 0.19 

RMSE 0.435 

 

MAE 0.271 
STDV 0.04 

Metrics D4N0108 
R2 0.802 
MSE 0.053 

RMSE 0.23 

 

MAE 0.162 
STDV 0.024 

Metrics D4N0053 
R2 0.554 
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MSE 0.028 

 
RMSE 0.167 

 

MAE 0.09 
STDV 0.014 

Metrics D4N0115 

 

R2 0.819 
MSE 0.015 

RMSE 0.121 

 

MAE 0.082 
STDV 0.015 

Metrics D4N0110 
R2 0.642 
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MSE 0.014 

 
RMSE 0.119 

 

MAE 0.10 
STDV 0.012 

Metrics D4N0123 

 

R2 0.741 
MSE 0.122 

RMSE 0.346 

 

MAE 0.208 
STDV 0.033 

Metrics D4N0824 
R2 0.515 
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MSE 0.37 

 
RMSE 0.602 

 

MAE 0.539 
STDV 0.062 

Metrics D4N0126 

 

R2 0.629 
MSE 0.026 

RMSE 0.164 

 

MAE 0.095 
STDV 0.016 

Metrics D4N0835 
R2 0.321 
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MSE 0.083 Graph 

 

RMSE 0.225  

 

MAE 0.207 
STDV 0.098 

Metrics D4N0142 

 

R2 0.812 
MSE 0.034 

RMSE 0.183 

 

MAE 0.133 
STDV 0.012 
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10 APPENDIX B 
 
Table 11-1 The statistical and graphical results of the NNAR's performance to simulate and predict groundwater 
levels from each modelled borehole in the Steenkoppies compartment. The standard deviation for the model 
predictions across the ten model runs is also presented. 

Metrics A2N0612 

 

R2 0.47 
 
 
 

 

MSE 0.06 
 
 

 

RMSE 0.25 
 

 

MAE 0.21 

STDV <0.01 
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Metrics A2N0617 

R2 0.59 
 

MSE 0.16 
 

RMSE 0.40 

MAE 0.28 

STDV 0.02 
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Metrics A2N0567 
 

 

R2 0.56 
 
 

MSE 0.09 

RMSE 0.29 
 

MAE 0.24 
 

sd 0.04 
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Metrics A2N0616 

 

R2 -0.07 
 

MSE 0.16 
 

RMSE 0.39 
 

MAE 0.33
 

sd <0.01 
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Metrics A2N0615 

 

R2 0.25 
 

MSE 0.13 
 

RMSE 0.36 
 

MAE 0,30
 

sd <0.01 
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Metrics A2N0614 

 

R2 0.14 
 

MSE 0.16 
 

RMSE 0.40 
 

MAE 0.37
 

sd <0.01 
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Metrics A2N0608 

 

R2 -6.93 
 

MSE 4.21 
 

RMSE 1.98 
 

MAE 1.77
 

sd 0.15 
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Metrics 37773 

 

R2 0.41 
 

MSE 0.08 
 

RMSE 0.28 
 

MAE 0.24
 

sd <0.01 
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Metrics A2N0554 

 

R2 -0.16 
 

MSE 0.27 
 

RMSE 0.52 
 

MAE 0.42
 

sd 0.02 
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Metrics A2N0563 

 

R2 0.76 
 

MSE 0.05 
 

RMSE 0.22 
 

MAE 0.15
 

sd <0.01 
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Metrics A2N0565 

 

R2 -1.70 

MSE 0.05 

RMSE 0.22 

MAE 0.18

sd 0.01 
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Metrics A2N0569 

 

R2 -0.31 
 

MSE 0.06 
 

RMSE 0.25 
 

MAE 0.20
 

sd 0.02 

 




