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The prediction of the soil infiltration rate is advantageous in hydrological design, watershed management, irrigation, and 
other agricultural studies. Various techniques have been widely used for this with the aim of developing more accurate 
models; however, the improvement of the prediction accuracy is still an acute problem faced by decision makers in many 
areas. In this paper, an intelligent model based on a fuzzy logic system (FLS) was developed to obtain a more accurate 
predictive model for the soil infiltration rate than that generated by conventional methods. The input variables that were 
considered in the fuzzy model included the silt and clay contents. The developed fuzzy model was tested against both the 
observed data and multiple linear regression (MLR). The comparison of the developed fuzzy model and MLR model indicated 
that the fuzzy model can simulate the infiltration process quite well. The coefficient of determination, root mean square 
error, mean absolute error, model efficiency, and overall index of the fuzzy model were 0.953, 1.53, 1.28, 0.953, and 0.954, 
respectively. The corresponding MLR model values were 0.913, 2.37, 1.92, 0.913, and 0.914, respectively. The sensitivity results 
indicated that the clay content is the most influential factor when the FLS-based modelling approach is used for predicting the 
soil infiltration rate.
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INTRODUCTION

Soil and water are the main natural resources that can be used 
in a crop production system. The process of the percolation 
of rainwater or irrigation water into the soil is commonly 
known as infiltration. Increased infiltration control would aid 
in solving such wide-ranging problems as upland flooding, 
declining water tables, surface and groundwater pollution, 
inefficient irrigation of agricultural lands, and wastage of useful 
water (Hajiaghaei et al., 2014; Singh et al., 2018). Soil infiltration 
measurement is an important indicator of irrigation and 
drainage efficiency and is used for optimizing water availability 
for plant growth and metabolism, improving crop yield, and 
reducing erosion (Patle et al., 2018).

Infiltration rate (IR) is defined as the rate at which filtration 
occurs through the soil (Vand et al., 2018). Soil IR is the main 
factor that affects surface irrigation uniformity and efficiency 
owing to its mechanism of distributing water from the surface 
to the soil profile (Hajiaghaei et al., 2014). The IR is affected by a 
number of parameters, such as rainfall, vegetation cover, initial 
soil moisture, and fertilization and physical characteristics of 
the soil (Suryoputro et al., 2018). The physical characteristics of 
soil are influenced by the soil textures, which comprise mineral 
particles including sand, silt, and clay (Haghnazari et al., 2015). 
Clay particles are important because of their small size which 
allows them to fill the voids between the larger particles, and 
their charge orientation which makes them play a crucial role 
in binding the soil matrix into larger structures (Haghnazari et 
al., 2015). Several studies have focused on investigation of the 
physical characteristics of soil and their relationship with infil-
tration. Some of these have been focused on porosity (Bouma, 
1982; Smettem, 1987), whereas others have concentrated on 
aggregation and structure (Helming et al., 1998), soil texture 
(Doerr et al., 2000; Ramos et al., 2003), and organic matter 
(Lado et al., 2004).

Field measurements of soil infiltration require consider-
able time and are costly. In contrast, infiltration models could 
significantly reduce the required time and cost (Mudiare and 
Adewumi, 2000). Many researchers have developed vari-
ous conventional models to estimate the IR (Kostiakov, 1932; 
Philip, 1957; Sihag et al., 2017). Alternatively, the IR can be 
modelled using soft computing techniques such as the artificial 
neural network, adaptive neuro-fuzzy inference system, and 
fuzzy logic system (FLS) approaches (Singh et al., 2018; Singh 
et al., 2019). The conventional models are site specific and 
require model parameters, whereas the soft computing-based 
models are used generally for the study area. FLS is one of the 
methods that has been used as a dominant tool in solving and 
overcoming water resource problems (Azamathulla et al., 2016; 
Kisi et al., 2017; Kumar et al., 2018). The main advantage of 
fuzzy logic is its ability to deal with uncertain data in the form 
of reasonably continuous categories (Metternicht, 2001) and to 
accomplish more flexible knowledge-based modelling (Tran et 
al., 2002). 

The fuzzy logic model (Zadeh, 1965) is a logical mathemati-
cal procedure based on the ‘IF-THEN’ rule system, which 
allows the human thought process to be reproduced in a math-
ematical form. According to Zadeh (1975), four basic units are 
required for the effective application of any fuzzy modelling 
strategy: the fuzzification unit (process that converts tradi-
tional inputs into fuzzy inputs), fuzzy rules unit (IF-THEN 
logical system that links the input to output variables), fuzzy 
inference unit (process that explains and combines rule out-
puts), and defuzzification unit (process that converts the fuzzy 
output to a traditional output). The methodologies proposed 
by Mamdani (1974) and Takagi and Sugeno (1985) are the most 
widespread in the development of fuzzy rule systems. The fuzzy 
model presented by Mamdani (1974) can represent a general 
class of systems that may include static or dynamic nonlinear 
systems. 

Fuzzy logic applications have been used in estimating the 
daily reference evapotranspiration (Odhiambo et al., 2001), 
predicting multiple soil properties (Lee et al., 2003), assessing 
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the water quality in rivers (Ocampo-Duque et al., 2006), deter-
mining irrigation efficiency (Kangrang and Chaleeraktrakoon, 
2007), developing rainfall-runoff models to describe the non-
linear relationship between the rainfall and runoff in a real 
system (Jacquin and Shamseldin, 2006), and predicting the sus-
pended sediment content of a river (Demirci and Baltaci, 2013). 
Abdel and Adeeb (2014) showed that the design, management, 
operation, and hydraulic evaluation associated with on-farm 
water applications depends heavily on the infiltration attributes 
of the soil. This is because the infiltration behaviour of the soil 
directly determines essential parameters such as inflow rate, 
run time, application time, and percolation depth in irrigation 
systems. Therefore, prediction of the soil IR is an important 
issue in agricultural engineering, water resource management, 
and soil desalination. The aims of this study were to: (i) develop 
a predictive model for soil IR using FLS, (ii) assess the perfor-
mance of the developed fuzzy model using a statistical compar-
ison between the results of the soil infiltration obtained from 
the developed fuzzy model and experimental findings, and (iii) 
compare the developed fuzzy model with the MLR in terms of 
their appropriateness for predicting the soil IR. Moreover, a 
sensitivity analysis (SA) was also performed and discussed to 
evaluate the effects of the input parameters on the infiltration 
modelling process.

MATERIALS AND METHODS

Data and site description 

Data used in building the fuzzy model were obtained from an 
experiment published by Hajiaghaei et al. (2014). The published 
experiment was conducted at the agricultural fields of Karaj, 
Alborz Province, Iran (35° 59′ N, 51° 6′ E and altitude of 
1 300 m amsl). The climate in the centre of Iran is classified 
as semi-arid (345 mm rainfall annually). The infiltration rates 
were estimated with the help of a cylindrical infiltrometer 
for all the selected treatments (Fig. 1). As shown in Fig. 1, the 
cylindrical infiltrometer has two concentric rings.  The initial 
reading of the water level was taken once the two rings were 
filled with water. The level of water in the inner ring of the 
infiltrometer was recorded at a regular interval of 2.5, 5, 10, 
15, 20, 25 and 30 munities until the rate of infiltration became 
constant. The IR was then calculated from the observed 

cumulative infiltration data. The summary statistics of 
infiltration rates and soil texture properties which greatly affect 
the infiltration process (Fig. 2) are listed in Table 1. 

Fuzzy logic system

The FLS is a theory in formal mathematics that enables 
a definitive solution to be obtained for problems that are 
complex, uncertain, and unstructured (Bojórquez-Tapia et 
al., 2002). A general fuzzy system (Zadeh, 1975) is composed 
of four primary elements: fuzzification, fuzzy rules, a fuzzy 
inference engine, and defuzzification (Fig. 3).

Fuzzification 

Fuzzification is a process that transforms a numerical value 
into a fuzzy value. Fuzzification is usually created with fuzzy 
sets that are defined by a membership function. Fuzzy sets 
commonly assign a domain of interest to the interval [0, 1]. The 
fuzzy set A ⊂  X is given by:

	 (1)
 

where x1 are the elements of the universe of discourse (X), and 
μA (x) is the membership function of x in A. 

Trapezoidal and triangular shapes are the most commonly 
used membership functions (Kosko and Toms, 1993). 

0 ( ) 1A xµ≤ =( ){ }1, ( ) ,AA x x x Xµ= ∈

Table 1. Summary statistics of infiltration rates and soil texture 
properties used in the developed fuzzy model

Statistics
Infiltration rate 

(mm/h)
Silt (%) Clay (%)

Mean 10.3 34.62 31.57

Standard deviation 7.75 12.73 8.03

Kurtosis 0.17 −0.01 −0.3

Skewness 1.25 −1.12 −0.52

Minimum 1.7 5 11

Maximum 28.5 52 46

Figure 1.  Schema of the double ring infiltrometer

Figure 2. Comparative movement of water in sandy and clayey 
soils. In sandy soils, water moves downwards readily owing to the 
gravitational pull. In clay soils, water moves slowly in all directions by 
capillary action (Whiting et al., 2005).
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Fuzzy rule base

The fuzzy rule base comprises fuzzy rules that represent all 
possible fuzzy relations between the input and output variables. 
These rules are expressed in IF-THEN statements (Eq. 2) (Ross, 
2005).  The number of rules is determined by the number of 
input parameters along with the membership functions.
	

1 ,1 2 ,2 , ,1        , ..,        1,  ..,  i i p i p iif x is A and x is A and x is A then y is B k… = …

(2)
where y is the variable to be inferred, and x1, x2, …, xp are the 
input variables. Ai,j are the terms that linguistic variables can 
assume (fuzzy sets), and i is the index of the rule k. Bi is the 
term assumed by the output linguistic variable.

Fuzzy inference engine

The fuzzy inference engine is the strategic unit that takes into 
consideration all the possible fuzzy rules in the fuzzy rule base 
and learns how to transform a set of inputs into corresponding 
outputs.  The fuzzy inference engine uses IF-THEN rules 
along with the connectors ‘OR’ or ‘AND’ for drawing essential 
decision rules (Zadeh, 1975). The methodologies introduced by 
Mamdani (1974) and Takagi and Sugeno (1985) are the most 

commonly used for the fuzzy inference system.  Figure 4 shows 
the Mamdani strategy represented in Eq. 2 for two simple rules. 

Defuzzification

The defuzzification is the process by which the fuzzy results of 
the inference are transformed into a numerical output (Van-
Leekwijck and Kerre, 1999). The methods frequently utilised in 
the defuzzification procedure are the mean of the maximums, 
smallest of the maximums, centre of gravity (COG) and the 
centroid of area. More detailed descriptions of fuzzy logic and 
fuzzy inference system models can be found in Ross (2005). An 
example of deffuzification using COG is presented in Fig. 5.

Building the fuzzy model

The fuzzy model was developed in the fuzzy logic toolbox of 
MATLAB software (Mathworks, 2016) using the Mamdani 
minimum–maximum inference engine. Flowchart of the 
FLS for modelling the soil IR is represented schematically in 
Fig. 6. The input and output variables that were considered 
in the fuzzy model were silt content (%), clay content (%), 
and IR (mm/h). The numerical inputs and output were 
transformed into fuzzy variables. The input variables were 

Figure 3. Basic structure of the fuzzy logic system

Figure 4. Mamdani strategy for fuzzy inference (Ross, 2005)
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then described using 5 linguistic terms: ‘very low’ (VL), ‘low’ 
(L), ‘medium’ (M), ‘high’ (H), and ‘very high’ (VH) which 
are used to describe all the possible fuzzy inputs. The output 
variable was also categorised into 5 classes: ‘very slow’ (VS), 
‘slow’ (S), ‘medium’ (M), ‘rapid’ (R), and ‘very rapid’ (VR) to 
characterise all the possible fuzzy outputs. The fuzzy model 
was trained using the triangular membership functions for 
both the input and output parameters (Fig. 7). The choice of 
the number of membership functions and their initial values 
was based on knowledge of the system and experimental 
conditions (Eqs 3–5). The developed fuzzy model relied on 25 
rules generated by the rule editor to describe all relationships 
between the input and output variables (Table 2).  Finally, COG 
was used, which is the most popular defuzzification method for 
obtaining a real-value (numerical) output. 

Figure 5. Centre of gravity (COG) method for defuzzification

Figure 6. Flowchart of the fuzzy logic algorithm
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	 (3)

	 (4)

	 (5)

Multiple linear regression 

MLR is a method that is used to model the linear relationship 
between a dependent variable (response) and one or more 

independent variables (predictors). The corresponding general 
equation is as follows: 

     (6)

where y is the dependent variable; b1, b2, …, bn are the 
coefficients of regression; and x1, x2,…,xn are the explanatory 
variables (predictors). 

In this study, the MLR was built using the data used in the 
fuzzy model to create a mathematical relationship for predict-
ing the IR as a function of the silt and clay contents (Eq. 7). The 
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Figure 7. Membership functions defined for fuzzy input and output 
variables

Table 2. Rules generated for the infiltration model

1 IF
(Silt is ‘Very 

low’)
AND

(Clay is 
‘Very low’)

THEN
(Infiltration is 
‘Very rapid’)

2 IF
(Silt is ‘Very 

low’)
AND

(Clay is 
‘Low’)

THEN
(Infiltration is 

‘Rapid’)

3 IF
(Silt is ‘Very 

low’)
AND

(Clay is 
‘Medium’)

THEN
(Infiltration is 

‘Medium’)

4 IF
(Silt is ‘Very 

low’)
AND

(Clay is 
‘High’)

THEN
(Infiltration is 

‘Slow’)

5 IF
(Silt is ‘Very 

low’)
AND

(Clay is 
‘Very high’)

THEN
(Infiltration is 
‘Very slow’)

6 IF (Silt is ‘Low’) AND
(Clay is 

‘Very low’)
THEN

(Infiltration is 
‘Rapid’)

7 IF (Silt is ‘Low’) AND
(Clay is 
‘Low’)

THEN
(Infiltration is 

‘Rapid’)

8 IF (Silt is ‘Low’) AND
(Clay is 

‘Medium’)
THEN

(Infiltration is 
‘Medium’)

9 IF (Silt is ‘Low’) AND
(Clay is 
‘High’)

THEN
(Infiltration is 

‘Slow’)

10 IF (Silt is ‘Low’) AND
(Clay is 

‘Very high’)
THEN

(Infiltration is 
‘Very slow’)

11 IF
(Silt is 

‘Medium’)
AND

(Clay is 
‘Very low’)

THEN
(Infiltration is 

‘Rapid’)

12 IF
(Silt is 

‘Medium’)
AND

(Clay is 
‘Low’)

THEN
(Infiltration is 

‘Medium’)

13 IF
(Silt is 

‘Medium’)
AND

(Clay is 
‘Medium’)

THEN
(Infiltration is 

‘Medium’)

14 IF
(Silt is 

‘Medium’)
AND

(Clay is 
‘High’)

THEN
(Infiltration is 

‘Slow’)

15 IF
(Silt is 

‘Medium’)
AND

(Clay is 
‘Very high’)

THEN
(Infiltration is 
‘Very slow’)

16 IF
(Silt is 
‘High’)

AND
(Clay is 

‘Very low’)
THEN

(Infiltration is 
‘Medium’)

17 IF
(Silt is 
‘High’)

AND
(Clay is 
‘Low’)

THEN
(Infiltration is 

‘Slow’)

18 IF
(Silt is 
‘High’)

AND
(Clay is 

‘Medium’)
THEN

(Infiltration is 
‘Slow’)

19 IF
(Silt is 
‘High’)

AND
(Clay is 
‘High’)

THEN
(Infiltration is 
‘Very slow’)

20 IF
(Silt is 
‘High’)

AND
(Clay is 

‘Very high’)
THEN

(Infiltration is 
‘Very slow’)

21 IF
(Silt is ‘Very 

high’)
AND

(Clay is 
‘Very low’)

THEN
(Infiltration is 

‘Medium’)

22 IF
(Silt is ‘Very 

high’)
AND

(Clay is 
‘Low’)

THEN
(Infiltration is 

‘Slow’)

23 IF
(Silt is ‘Very 

high’)
AND

(Clay is 
‘Medium’)

THEN
(Infiltration is 
‘Very slow’) 

24 IF
(Silt is ‘Very 

high’)
AND

(Clay is 
‘High’)

THEN
(Infiltration is 
‘Very slow’)

25 IF
(Silt is ‘Very 

high’)
AND

(Clay is 
‘Very high’)

THEN
(Infiltration is 
‘Very slow’)
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standard error (SE), coefficient of correlation (CC), t statistic 
and probability value (p-value) of independent parameters were 
employed to evaluate the accuracy of the predictive MLR:

(7)

where IR is infiltration rate (mm/h); SI is silt content (%); and 
CL is clay content (%).

Criteria for evaluation

The performance of both the fuzzy and MLR models was 
evaluated by the coefficient of determination (R2), mean 
absolute error (MAE), root mean square error (RMSE), overall 
index (OI), and model efficiency (ME). The R2, MAE, RMSE, 
OI, and ME were calculated using Eqs 8–12, as presented in 
Table 3 (Rahman and Bala, 2010; Alazba et al., 2011; Zangeneh 
et al., 2012).  The higher values of R2 represent a greater 
similarity between the observed and predicted values. On the 
other hand, the lower values of MAE and RMSE show a high 
accuracy between the observed and predicted values.  An ME 
and OI value of 1 implies that the observed and predicted 
results agree well (Alazba et al., 2011). In other words, the MAE 
and RMSE values have to be closer to zero, whereas the values 
of R2, OI, and ME should approach 1 as much as possible.

Pi and P–  represent the predicted and average predicted 
values, respectively; Qi and Q–  represent the observed and 
average of the observed values, respectively; Qmax is the 
maximum observed value; Qmin is the minimum observed 
value; and N is the number of data points.

Sensitivity analysis

A sensitivity analysis (SA) is a useful tool for determining the 
contribution and relative importance of parameters in the 
modelling process. The SA assesses and describes how the 
model output values are affected by changes in the input values. 
The cosine amplitude method (CAM) was used in this study to 
distinguish the most sensitive factors affecting the soil IR. This 
is an effective method of performing an SA (Ross, 2005). The 

degree of sensitivity of each input factor (silt and clay contents) 
was assigned by establishing the strength of the relationship 
(Rij) between the IR and the input factors under consideration. 
A higher CAM value indicates a greater impact on the IR.

Let us assume that n data samples are gathered from a com-
mon data array X; then the datasets employed to construct a 
data array X are defined as follows:

  (13)

Each of the elements xi in the data array X is a vector of 
length m, that is

(14)

Thus, each of the data pairs can be thought of as a point in 
an m-dimensional space, wherein each point requires m coor-
dinates for a complete description. The strength of the relation-
ship between the data pairs xi and xj is estimated and demon-
strated using the following equation:

   (15)

where i, j = 1, 2, …, n

RESULTS AND DISCUSSION

Fuzzy logic model

Figure 8 shows the graphical depiction of the 25 rules produced 
to map the inputs (silt and clay contents) into the output (IR). 
In this figure, we observe that each rule is represented in a 
row individually, whereas the variables are represented in 
individual columns. The first two columns of the plot describe 
the membership functions for the input factors, which is 
indicated through the antecedent (IF-part) of each rule. The 
third column shows the membership functions represented 
via the consequent (THEN-part) of each rule. The vertical red 

IR = 0 1 2+ SI + CLβ β β
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Table 3. Statistical performance parameters

Parameter Description Equation

Coefficient of 
Determination

Measures the degree of correlation between  
the experimental and predicted values 

   (8)

Root mean square 
error

Measures the error in the same units as the 
variable between the experimental and 
predicted values

  (9)

Mean absolute error
Measures the average magnitude of the 
errors in a set of forecasts without taking into 
consideration their direction

  (10)

Model efficiency
Measures the efficiency between the 
experimental and predicted values

  (11)

Overall index
Measures the performance of the mathematical 
models and fitting between the experimental 
and predicted values

   (12)

2N
i ii=12

N N2 2
i ii=1 i=1

(P - P )(Q - Q )
R =  

(P - P ) (Q - Q )

 
  ∑
∑ ∑

N
2

i i
i=1

1RMSE = (P - Q )  
N ∑

N

i i
i=1

1MAE = P - Q  
N ∑

N 2
i ii=1

N 2
ii=1

(Q - P )
ME = 1-  

(Q - Q )
∑
∑

max min

1 RMSEOI = 1 - + ME
2 Q - Q
  
      
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lines inside the first and second columns show the current 
data of the inputs. A yellow patch under the actual curve of the 
membership function is used to represent the value of the fuzzy 
membership. Thus, the properties of each variable in relation 
to the input index line are presented. The lowest plot inside the 
right column is the combination of each consequent. The value 
of the defuzzified output is indicated by a bold vertical line 
crossing the aggregate fuzzy set. For example, for the system 
inputs of 40% silt and 36% clay, the defuzzified IR is found to 
be 9.68 mm/h. Furthermore, the surface viewer model provides 
a three-dimensional curve that maps the silt and clay contents 
to the IR (Fig. 9). In Fig. 9, the IR values decrease with the 
increasing clay content of the soil. Similarly, the same trend was 
observed in the case of the silt content. However, the relative 
change was smaller.

Simulating the fuzzy model

The fuzzy model was simulated in the Simulink environment 
of the MATLAB software which is a graphical programming 
environment for modelling, simulating, and analysing multi-
domain dynamic systems (Fig. 10). As shown in Fig. 10, 
two inputs of silt content (40%) and clay content (36%) are 
multiplexed and sent into the fuzzy logic controller, while the 
output of the IR (9.60 mm/h) is captured on a display box. It is 
apparent that there is a close agreement between the observed 
(9.60 mm/h) and predicted (9.68 mm/h) values of the IR. This 
high level of agreement between the observed and predicted 
values demonstrates the effectiveness of the developed fuzzy 
model for predicting the soil IR.

MLR model

The effect of the independent variables (SI and CL) and their 
interactions on the dependent variable (IR) were statistically 
analysed. The SE, t-statistic and p-value are presented in 
Table 4. On examining the p-value, a significant effect was 
observed between the independent variables and the IR at 

an alpha level of 0.05. Both the SI and CL were found to be 
influential variables within the calculation of the IR, wherein 
the SE of those variables were ±0.02 and ±0.04, respectively. 
Moreover, Fig. 11 shows the observed and predicted values 
of the IR using the MLR. From this figure, it can be observed 
that the values predicted by the MLR are in conformity with 
those obtained from the field. Also the SI and CL variables are 
inversely proportional to the IR. These results agree with the 
results of Hajiaghaei et al. (2014).

Figure 9. Surface graph showing the relationship of the IR with the 
silt and clay contents

Figure 8. Rule viewer window of the developed fuzzy model

Table 4. Results of regression analysis of IR for the developed MLR

Variables Coefficients Value SE t-statistic P-value CC

Intercept 0β 37.78 0.94 40.01 0.00 0.96

SI 1β −0.32 0.02 −13.64 0.00

CL 2β −0.52 0.04 −14.28 0.00

CC: coefficient of correlation; SE: standard error of regression coefficients; 
p-value: probability value; SI: silt content; CL: clay content
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Figure 10. Simulation of soil IR prediction using fuzzy logic controller developed in Simulink environment

Figure 11. Comparison between observed and predicted values of IR using MLR 
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Comparing the fuzzy model with MLR 

Figure 12 compares the experimental and predicted values of 
the soil IR using the fuzzy and MLR models. The dotted line 
represents the condition in which the outputs and targets are 
equal, whereas the circles represent data points. The solid line 
represents the best fit between the outputs and targets. It is 
apparent that the data points (circles) are clustered along the 
dotted line, which emphasizes that the IR values correlated by the 
developed fuzzy model and MLR provide a good match between 
the experimental and predicted results. However, results generated 
by the fuzzy model are more accurate than those calculated using 
the MLR. The higher level of agreement is also reflected in the 
values of the statistical parameters, such as correlation coefficient 
(R), which was 0.97654 and 0.95554 for the fuzzy model and MLR, 
respectively. Generally, a close agreement between the observed 
and predicted results demonstrates the consistency of the 
developed fuzzy model for predicting the soil IR.

Validating the developed fuzzy model

Table 5 shows the results of R2, MAE, RMSE, OI, and ME, 
which are used to evaluate the agreement between the 
measured and predicted results. The developed fuzzy model 
had R2, OI, and ME values that were approximately 4.3%, 
94.5%, and 95.3%, respectively, more accurate than those from 

MLR, which demonstrates a close agreement between the 
observed and predicted results by the FLS.  Also, it should be 
noted (Table 5) the MLR had RMSE and MAE values that were 
approximately 1.5 times as high as those obtained using the 
developed fuzzy model. Furthermore, a graph of the relative 
errors for the fuzzy model and MLR using the soil IR dataset 
is shown in Fig. 13. The fuzzy model was found to have the 
ability to predict the soil IR with errors (93% of the values) 
fluctuating mostly from −0.5 to +0.5. In contrast, the values of 
relative error obtained from the MLR which fall within ±0.5% 
were less than 85% of the entire error values. In conclusion, 
the comparison between the developed fuzzy model and MLR 
demonstrated that the fuzzy model can predict the soil IR more 
effectively than MLR.

Figure 12. Comparing the experimental and predicted values of IR using the developed fuzzy model and MLR

Table 5. Statistical parameters for evaluating the performance of 
the fuzzy model and MLR

Models
Statistical parameters

R2 RMSE MAE ME OI

Fuzzy 0.953 1.53 1.28 0.953 0.945

MLR 0.913 2.37 1.92 0.913 0.914

R2: coefficient of determination; RMSE: root mean square error; MAE: 
mean absolute error; ME: model efficiency; OI: overall index of model 
performance.

https://www.watersa.net
https://creativecommons.org/licenses/by/4.0/


https://doi.org/10.17159/wsa/2019.v45.i3.6737
Available at https://www.watersa.net
ISSN 1816-7950 (Online) = Water SA Vol. 45 No. 3 July 2019
Published under a Creative Commons Attribution 4.0 International Licence (CC BY 4.0) 409

Sensitivity analysis

Using Eq. 14, a series of SAs was conducted on the input and 
output parameters. The values of Rij between the IR values 
predicted by the fuzzy and MLR models and related input 
factors using the CAM method are shown in Fig. 14. As shown, 
the obtained Rij values for all the inputs were not significantly 
different but close to 1, which indicates that all inputs 
strongly contributed to the developed fuzzy and MLR models. 
Furthermore, this indicates that all the inputs were important in 
predicting the soil IR and none should be neglected. The obtained 
results agree with the findings of Hajiaghaei et al. (2014).

CONCLUSIONS

Knowledge of infiltration processes is imperative in irrigation 
management and other agricultural studies. In this study, an 
intelligent model based on the fuzzy logic system was developed 
as an alternative algorithm to estimate the infiltration rate of 
the soil. For this study, a dataset containing 100 observations in 
the field, obtained by double ring infiltrometer, was analysed.  
Based on the obtained results, the fuzzy model has a suitable 
capability to predict the infiltration rate of the soil. The fuzzy 
model also provides better performance than the MLR model 
that was used for evaluation purposes. Sensitivity analysis 
suggests that the clay content is the most effective parameter for 
the estimation of soil infiltration rate.
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