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EXECUTIVE SUMMARY 
 

Droughts can have a devastating effect on the economy of a country as well as the livelihoods 
and quality of life of communities, especially those with limited resources or ability to adapt. 
South Africa is especially prone to drought due to our highly variable rainfall, both seasonally 
and over longer cycles of above and below average rainfall.  
 
An early warning system would allow action to be taken timeously so as to mitigate the effects 
of drought where possible. The ultimate purpose of this project was to develop such an 
integrated system to monitor and predict droughts so that action can be taken timeously to 
manage the impact of droughts.  
 
There are several components to drought, such as, rainfall, streamflow, reservoir storage and 
groundwater. These hydrological and climatic aspects cannot be viewed in isolation since they 
are linked within in a complex system. An understanding of the cause and effect and 
interaction between these aspects is essential to develop a comprehensive and integrated 
drought warning system. 
 
The driver behind the hydrological cycle is rainfall, and hence monitoring and prediction of 
rainfall is key to predicting streamflow, reservoir storage, groundwater and soil moisture.  
 
Two different approaches to rainfall forecast at seasonal time scale were developed and are 
reported on, namely: 
 

• Numerical climate forecast based on climate models (section 4.3) 
• Statistical forecast based on rainfall monitoring and persistence of current rainfall 

anomaly 
 
Numerical climate forecast data from 10 General Circulation Models (GCMs) has been used 
as input into hydrological models to simulate and predict streamflow and soil moisture. The 
forecast skill of these forecasts was evaluated and it was found that there is significant skill for 
forecasts up to three months into the future. Due to the chaotic nature of weather systems, 
forecasts beyond three months does not have significant skill. The GCM climate data is 
statistically downscaled to the spatial scale of Rainfall Zones based on hydrological and 
climate datasets created within the Water Resources 2012 study (Bailey & Pitman, 2015, 
thereafter WR2012). In this study, the monthly rainfall obtained from WR2012 for the period 
of 1983-2009 was used. 
 
The website http://cip.csag.uct.ac.za/forecast/ was developed as part of this project to spatially 
present the GCM data and the statistical analysis of the data sets (see Figure A). 
  

http://cip.csag.uct.ac.za/forecast/
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Streamflow is modelled with the aid of a Pitman type hydrological model which has been 
modified to carry out multiple runs to cater for rainfall input from GCMs. Every month, rainfall 
forecast values are replaced with observed rainfall from the CHIRPS satellite rainfall database. 
Hence the Pitman simulation provide simulated naturalised flow that is updated every month 
and forecast three months into the future. 
 
Soil moisture is a key component of the Pitman model and hence soil moisture forecasts are 
an intrinsic component of the output from the hydrological model. The Sami Groundwater 
model has been incorporated into the modified Pitman model in order to forecast groundwater 
storage. 
 
Storage in dams is modelled with a Reservoir Simulation Model using the forecast naturalised 
flows, catchment water use and abstractions from the dam as input to forecast storage three 
months into the future. 
 
Four pilot studies were carried out to test the four components of the forecast, namely 
streamflow, reservoir storage, groundwater and soil moisture. It was concluded that forecasts 
of streamflow and storage are useful in that they are reducing the uncertainty relating to a 
stochastic analysis in which a much wider range of flows and hence storage is possible. The 
flow and storage forecasts can mostly be compared to observed flow and/or storage available 
from the Department of Water and Sanitation website while equivalent observed data for soil 
moisture and groundwater is not available. Soil moisture status and prediction are however 
available from the website http://wxmaps.org/pix/soil10. The use of the Gravity Recovery and 
Climate Experiment (GRACE) model was investigated as tool for monitoring groundwater but 
the resolution of the data is too coarse for quaternary scale monitoring. Borehole water level 
monitoring, on the other hand, only provides an estimate of the groundwater storage over the 

http://wxmaps.org/pix/soil10
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small area representative of the borehole water level and is too limited to represent quaternary 
scale groundwater storage, typically not more than a few square kilometres. 
 
A modelling User Interface was developed, referred to as the Integrated Drought Monitoring 
and Prediction System (see Figure B). 
 

 
Figure B: Integrated Drought Monitoring and Prediction System 

 
This application links to the CSAG rainfall website to assess and download rainfall forecasts. 
Streamflow, Groundwater and Soil moisture components are modelled using the recoded 
Pitman Model while storage is modelled using the Water Resources Modelling Platform. For 
each forecasting component, a monthly time step time series is produced from which drought 
indices are calculated. 
 
The application also provided links to other useful forecasting websites. 
 
The way forward with this forecasting and monitoring system is to implement it within the 
catchment operated by the Inkomati Catchment Management Agency (IUCMA) and within 
selected catchments operated by the Department of Water and Sanitation’s Stand Alone 
Dams project. 
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1 INTRODUCTION 

Droughts can have a devastating effect on the economy of a country as well as the livelihoods 
and quality of life of communities, especially those with limited resources or ability to adapt. 
South Africa is especially prone to drought due to our highly variable rainfall, both seasonally 
and over longer cycles of above and below average rainfall. An early warning system would 
allow action to be taken timeously so as to mitigate the effects of drought where possible. The 
ultimate purpose of this project is to develop such an integrated early warning system taking 
all aspects of drought into account, such as, rainfall, streamflow, storage and groundwater. 
These hydrological and climatic aspects cannot be viewed in isolation since they are linked 
within in a complex system. An understanding of the cause and effect and interaction between 
these aspects is essential to develop a comprehensive and integrated drought warning 
system. 
 
The focus of this first report is on hydrological predictability. With the exception of desalination, 
all runoff and groundwater sources in southern Africa are derived from rainfall, hence the 
starting point in developing a drought warning system is to attempt to predict or at least reduce 
uncertainty with regard to rainfall prediction. Streamflow is strongly correlated to rainfall while 
the state of groundwater and evapotranspiration potential also influence streamflow. 
Groundwater as a water resource is also prone to droughts and hence must form part of any 
drought early warning system.  
 
This report highlights various aspects of hydrological predictability and makes a 
recommendation on the way forward with the development of an integrated drought warning 
system. 
 
• Rainfall 
• Streamflow 
• Reservoir storage 
• Groundwater 
• Soil moisture 
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2 EXISTING DROUGHT MONITORING AND PREDICTION 
SYSTEMS 

2.1 Introduction 

A literature review of drought monitoring and prediction systems revealed that there several 
regional drought monitoring systems that have been developed recently while there is also 
one global drought monitoring system. The three systems which are well documented and 
which were reviewed are: 
 
• Surface Water Monitor System (USA) 
• African Drought Monitor, and 
• GIDMaPS (Global) 
 

These systems all utilise the same general approach for monitoring, which is to use rainfall, 
streamflow and soil moisture indices, these are defined as the difference in the parameter 
(e.g. rainfall, streamflow, soil moisture) from the mean over a specified time period. (McKee 
et al. (1993)). Expressed mathematically for runoff (as an example): 
 
Standardised Precipitation Index (SPI) 
This index, SPIi,k, requires rainfall values Ri,j where I denotes the hydrological year and jth 
month within a hydrological year. The cumulative rainfall, Vi,k:, for the i-th Hydrological year 
and k-th reference period can be obtained from:  
 
V i,k =∑j

kRt,ji=1,2….,          j=1,2….,                k=1,2,3,4  
 
SPIi,k  = (Vi,k- Vmeank)/Sk 
 
Where Vmeank and Sk are respectively the mean and standard deviation of the cumulative 
rainfall for the k-th reference period. 
 
The reference periods used for runoff and rainfall would typically vary from 3, 6, 12, 24, or 48 
months while reference periods for soil moisture would be much shorter. 
 
The definitions of states of drought, according to McKee et al. (1993) SPI are as indicated in 
Table 2.1. 
 

Table 2.1: SPI drought categories (Mckee et al., 1993) 

SPI value Drought category Time in category 
0 to -0.99 Mild drought 24% 
-1.00 to -1.48 Moderate drought 9.2% 
-1.50 to -1.99 Severe drought 4.4% 
< -1.99 Extreme drought 2.3% 
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2.2 Surface Water Monitor 

The Surface Water Monitor (SWM) is described as a real-time hydrological monitoring and 
prediction system for the USA. It generates information on a daily basis for rainfall, runoff and 
soil moisture conditions in the USA and make forecasts for 1 to and 3 months into the future.  
See Figures 2.1 and 2.2. 
 

 

Figure 2.1: Surface Water Monitor: Home Page 

 
Figure 2.2: Surface Water Monitor: Rainfall forecast 
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SWM carries out forecasts using the Ensemble Streamflow Prediction Method (Twedt et al., 
1977). This method entails setting antecedent conditions such as soil moisture and snow water 
equivalent within a hydrological model which then models a range of possible future states 
using past weather observations. An improvement on Twedt’s original method is to only use 
ensemble members that match the current ENSO state (La Niña, Neutral, El Niño). 
 

2.3 African Flood and Drought Monitor 

In collaboration with the International Hydrological Programme, Princeton University has 
developed an experimental drought monitoring and forecast system for sub-Saharan Africa. 
The system aims to provide timely and useful information on drought by integrating climate 
predictions, hydrological models and remote sensing data. The main components of the 
system include the provision of near real time evaluations of the terrestrial water cycle and an 
assessment of drought conditions. The system has been designed for data scarce regions 
and uses macro scale hydrological modelling. Hydrological and drought forecasts are provided 
for 6 months. The predictive skill of the system has been evaluated for 30 years of historic 
hind casts and shows potential for providing useful forecasts of developing drought conditions, 
particularly for the first month. The web interface is shown in Figure 2.3. 
 

 
Figure 2.3: African Flood and Drought Monitor Home Page 

 
The African Drought Monitor and Forecast system explanation 
(http://unesdoc.unesco.org/images/0023/002319/231937e.pdf) outlines the monitor’s three 
parts (see Figure 2.4 below):  
 
a) Historic reconstructions of the terrestrial hydrological cycle that is derived from 

simulations of the VIC land surface model forced by a hybrid reanalysis observational 
meteorological dataset. The datasets are used for a variety of applications including 
analysis of historic drought events, estimation of trends and variability, and investigation 
of drought mechanisms.  
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b) Real-time monitoring component that updates the model run to 2-3 days from real time 
forced by bias corrected and downscaled TMPA satellite precipitation and GFS analysis 
fields of temperature and wind speed. There is also potential to force other impact 
models such as crop models. 

c) Seasonal hydrological forecast component that uses bias corrected and downscaled 
CFSv2 climate forecasts of precipitation and temperature to drive the model and provide 
ensemble predictions of drought conditions, for precipitation, soil moisture and 
streamflow. The figure below shows existing components in normal font, while potential 
future components are in italic font. 

 
CFSv2 is an acronym for version 2 of the Coupled Forecast System which is a fully coupled 
General Circulation Model representing the interaction between the Earth's atmosphere, 
oceans, land and sea ice. 
 

 

Figure 2.4: Overview of the Drought Monitoring and Forecasting components 

 

2.4 Global Integrated Drought Monitoring and Prediction System 

The Global Integrated Drought Monitoring and Prediction System (GIDMaPS) integrates 
precipitation and soil moisture data from several remote sensing platforms to produce drought 
indices for the howl globe (Hao Z et al., 2014). See Figure 2.5 which is an extract from the 
GIDMaPS website. GIDMaPS adds a Multivariate Standardized Drought Index (MSDI) (Hao 
and AghaKouchak, 2013b) to the SPI and SMI used by other drought monitoring systems. 
MSDI is the joint cumulative probability of rainfall and soil moisture. 
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GIDMaPS uses the Ensemble Streamflow Prediction method (Twedt et al., 1977) to perform 
seasonal forecasts. 
 

 

Figure 2.5: GIDMaPS website  
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3 RAINFALL PREDICTABILITY 

3.1 Introduction 

There is a limit to the predictability of the climate system because of the chaotic nature of that 
system. This means that the climate evolution is sensitive to small perturbations in the initial 
state, and that sensitivity manifests in the dynamical models of the climate system. Since the 
initial state of the climate system at the time of the forecast can never be determined precisely, 
that sensitivity limits ability to predict the future evolution of the climate system with dynamical 
models. In fact, the dynamic equations that govern the atmospheric motions are theoretically 
deterministic, but the chaotic nature of the system means that errors and uncertainty in the 
starting point amplify through the forecast time (Palmer, 2001). As a consequence, forecast 
systems that rely on the initial conditions allow for reliable forecast only at short, the so-called 
meteorological time scales – in the order of 1-5 days ahead. 
 
Forecasting at longer, the so-called seasonal time scales (1-3 months ahead) relies on 
boundary conditions. The atmosphere variability is strongly influenced by energy fluxes at the 
ocean and continental surface. The characteristics of these surfaces change relatively slower 
than the timing of internal atmospheric variability – sea surface temperature anomalies, soil 
moisture or snow cover can persist for periods of time longer than a couple of weeks. Under 
some conditions, the association between these anomalies and local climate can extend 
predictability of the climatic responses into the seasonal time scale. A good example of such 
a longer-term predictability is the El Niño-Southern Oscillation (ENSO) phenomenon. ENSO 
varies slowly, and is predictable at least six months in advance, and there are relatively strong 
association between rainfall in various parts of the world and the state of ENSO. ENSO is the 
strongest natural fluctuation of climate on inter-annual time-scales. But weaker ENSO-like 
fluctuations, for example, Pacific Decadal Oscillation (PDO) may manifest at decadal time-
scales. Importantly, predictability related to ENSO does not manifest universally, but only in 
some regions of the world and in some seasons. In southern Africa, for example, ENSO-
rainfall association supports predictability of summer rainfall mostly in the north-east part of 
the country, in the beginning of the rainy season (Nov-Dec) and under strong ENSO forcing, 
i.e. during strong El Niño or La Niña, but not in neutral ENSO state.  
 
Apart from the factors that are dependent on the nature of the forecasting tools (models), i.e. 
the presence of the relevant boundary forcing as described above, skill of the prediction also 
depends on models’ ability to accurately represent the significant climate processes. This is 
affected by the choice of forecast scheme, discretization of the system equations in time and 
space, limited understanding of atmospheric processes, inaccurate parameterization of small-
scale sub-grid processes, and the propagation of errors in their interaction.  
 
All the above factors cause that in practice, a detailed prediction of atmospheric features is 
limited to about two weeks, and at longer time scales, only in certain regions and in certain 
seasons, and even then, prediction will be associated with substantial uncertainty. 
 
The primary objective of this chapter is to describe various rainfall drivers over southern Africa 
which may influence the predictability of the seasonal rainfall over the regions, and to evaluate 
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the skill of three climate forecast systems, in the context of hydrological early warning system 
at seasonal time scales. 
 

3.2 Drivers of southern Africa rainfall  

Several studies have identified and discussed various atmospheric features and processes 
that modulate the spatial and temporal distribution of rainfall in southern Africa. Table 3.1 
provides a brief description on the most important rainfall drivers and short review on how they 
influence southern Africa rainfall. A more comprehensive review can be found in Reason 
(2018). 
 
Southern Africa rainfall has a strong seasonal cycle, but most areas in the region receive their 
rainfall in summer; the exception is the south-western Cape that experiences winter rainfall 
and the southern Cape coastal region receives rainfall year-round. Although the majority of 
summer rainfall is associated with the Tropical Temperate Trough (TTT) cloud-bands, various 
atmospheric features interact to contribute to the summer rainfall (Table 3.1). The regional 
atmospheric circulation converges moisture from the surrounding oceans into the South Indian 
Convergence Zone (SICZ) (Streten, 1973; Cook, 2000) which sustains TTTs.  In that system, 
the westerlies bring moisture from the tropical Atlantic around the Angolan Low and the 
easterlies supply moisture from the southwest Indian Ocean through the South Indian 
Anticyclone (SIA). The north-easterlies bring in moisture from the equatorial western Indian 
Ocean into the boundary of the SICZ (Cook, 2000; Todd and Washington, 1999). Hence, a 
change in any of the regional circulations, may have ripple effects on other circulations and 
hence on the southern Africa rainfall. 
 
El Niño-Southern Oscillation (ENSO) is the teleconnection with the greatest impact on 
southern Africa summer rainfall (Lindesay, 1988; Rocha and Simmonds, 1997; Reason et al., 
2000; Cook, 2001; Reason and Jagadheesa, 2005). A link between El Niño and summer 
droughts over Southern Africa was found to be strongest in the south-eastern part of the sub-
continent and over northeast South Africa (Richard et al., 2000). ENSO has the greatest 
influence on rainfall over southern Africa during its mature phase between the austral summer 
months of December and March. Meque and Abiodun (2014) showed that El Niño events 
favour widespread dry conditions in the southern Africa region, except over northern 
Mozambique, southern Tanzania, north-eastern Zambia and eastern DRC, where El Niño 
events produce wet conditions. The impact of ENSO on southern Africa rainfall come directly 
through changes in regional circulation. El-Niño events impose regional circulation changes 
that reduce moisture convergence, uplift and instability needed for tropical-extratropical cloud-
band development over the region (Cook, 2001; Mulenga et al., 2003; Ratnam et al., 2014). 
Meque and Abiodun (2014) showed that during El Niño years, the SICZ (and TTTs) shift north-
eastwards due to weakening of the SIA, consequently inhibiting precipitation over southern 
Africa. The impact of ENSO on southern African rainfall also indirectly through changes in 
other atmospheric teleconnections, like Pacific South American pattern (PSA; Karoly, 1989; 
Ghil and Mo, 1991; Mo and Higgin, 1998; Mo, 2000). The relationship between ENSO and 
southern Africa rainfall is characterized by a degree of uncertainty. For example, the 
1997/1998 El Niño event was one of the strongest in the last century, but it did not lead to the 
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expected severe drought over subtropical southern Africa. Other phenomena shown to 
modulate the rainfall variability in southern Africa include the Tropical Indian Ocean Dipole 
(TIOD) (Saji et al., 1999; Yamagata et al., 2004), the Subtropical Indian Ocean Dipole (SIOD; 
Behera and Yagamata, 2001;), The Southern Annular Mode (SAM) (Gillett et al., 2006), the 
Benguela Niño (Rouault et al., 2009).  
 

Table 3.1:  Drivers of southern Africa rainfall variability at various spatial and temporal 
scales 

System Description and influence on rainfall 
Regional 
 
Inter-Tropical 
Convergence Zone 
(ITCZ)  

ITCZ is the dividing line between the two main air masses (the 
south-easterly trade winds and north-easterly trade winds) that 
influence southern Africa climate. ITCZ has a clear seasonal 
cycle, as it follows the apparent movement of the sun. Over 
southern Africa, it starts to move south of the equator in October 
reaching the its southernmost position over central Madagascar 
and Mozambique in February, after which it starts to retreat 
northward. The southward movement of the ITCZ ushers in the 
rainfall season over southern Africa while the northward retrieval 
terminates the rainfall season. An anomalous southward shift 
and strengthening of the ITCZ over tropical south-eastern Africa 
produces wet summers in South Africa (Cook et al., 2004). 

 
South Indian Anti-
cyclone (SIA) 

SIA is a region of semi-permanent high atmospheric pressure 
over the Indian Ocean between 20oS and 35oS. It is one of the 
centres of anticyclonic activity in the southern hemisphere 
subtropical belt. A stronger (weaker) SIA increases (decrease) 
rainfall across southern Africa (Cook et al., 2004; Reason and 
Jagadheesha, 2005; Reason et al., 2006; Manhique et al., 2011; 
Munday and Washington, 2017).  

 
South Atlantic 
Anticyclone (SAA) 

SAA is a semi-permanent high-pressure system in the southern 
part of the Atlantic Ocean. It has seasonal shift of about 6o 
latitudinally and 13o zonally. An anomalously strong SAA is 
associated with wet conditions over some parts of southern 
Africa (Walker, 1990; Tyson, 1986). 

 
Botswana High  

This is a tropical upper-level anticyclone that forms at 500 hPa 
level over central Namibia and western Botswana during the late 
austral summer. Botswana High is said be part of atmospheric 
circulation induced by heat release from heavy precipitation 
Congo basin. The relative strength and position of the Botswana 
high influence rainfall over the region. For example, a stronger 
than usual Botswana high has be shown to produce normal 
rainfall over Zimbabwe (Ratna et al., 2013). 
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System Description and influence on rainfall 
Regional 
 
Angola Low  

This is a shallow heat low located over southern Angola and 
northern Namibia. It starts developing around October and 
strengthens during January and February, acting as the tropical 
source region for the tropical-extratropical cloud bands that bring 
most of the summer rainfall over southern Africa south. A 
stronger Angola low results in higher of rainfall over the region 
(Reason et al., 2006b; Mason and Jury, 1997; Cook et al., 2004; 
Hart et al., 2010) 

 
Tropical Temperate 
Trough (TTT) 

TTT is a tropical-extratropical cloud-band development that often 
extend NW-SE over southern Africa, from the Angolan Low 
region out into the southwest Indian (Harrison, 1984; Todd and 
Washington, 1999; Washington and Todd, 1999; Fauchereau et 
al., 2009; Hart et al., 2010; Manhique et al., 2011; Hart et al., 
2013). Ocean. The TTT cloud-bands constitute the South Indian 
Convergence Zone (SICZ). TTTs bring a large portion of the 
summer rainfall south of about 15oS (Todd and Washington 1998; 
Washington and Todd, 1999; Manhique et al., 2011; Hart et al 
2010, 2013; Ratna et al., 2012; Tozuka et al., 2014). For 
example, Hart et al. (2013) found that TTTs can contribute 30-
60% of the mean summer rainfall over South Africa. 

 
Mid-latitude frontal 
systems 

These are frontal systems that form over the southern part of the 
Atlantic Ocean and approach the southwestern part of South 
Africa from the west. They occur mainly during the winter months 
in the Southern Hemisphere (May to July) although development 
can occur throughout the year. In winter months, the mid-latitude 
frontal systems frequently impact southwestern Africa, the only 
region in the sub-continent that receives mainly winter rainfall. 

 
Tropical cyclones 

Tropical cyclones that form over the warm South West Indian 
Ocean usually move with easterly mid-level flow towards 
southern Africa and make landfall over the eastern Madagascar 
and the western Indian Ocean islands of Mauritius and Reunion 
(Xie et al., 2002; Malan et al., 2013) 

 
Easterly waves or lows 

These are easterly waves or lows that pass across southern 
Africa in summer without TTT development. These waves tend 
to be semi-stationary rather than propagating. During their 
passage, the easterly waves or lows produce widespread heavy 
rainfall north of about 25-30oS (Dyson and Van Heerden, 2001; 
Reason and Keibel, 2004) 

 
Cut-off lows 

Cut-off lows are cold cored westerly systems that form in the mid- 
and upper troposphere on the equatorward side of the 
subtropical jet. They are formed from Rossby wave breaking that 
occurs or before the day the cut-off low forms. Occasional cut-off 
lows can contribute substantially to the winter rainfall in some 
years (Favre et al., 2012; Molekwa et al., 2014) and to spring 
rainfall over the south coast of South Africa (Weldon and 
Reason, 2015: Engelbrecht et al., 2015). 
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System Description and influence on rainfall 
Regional 
 
Atmospheric rivers 

Atmospheric rivers are narrow plumes of enhanced winds that 
transport large amounts of tropical-sourced moisture into the 
higher latitudes over large distances. Heavy rainfall events in 
many subtropical and mid-latitude regions have been associated 
with atmospheric rivers (Zhu and Newell, 1994, 1998; Gimeno et 
al., 2016). 

Mesoscale or local 
 
Mesoscale Convective 
Complexes (MCC) 

MCCs are clustered along the eastern regions of southern Africa, 
adjacent to the warm waters of the Mozambique Channel and 
Agulhas Current. A few infrequent systems are found to be 
developing in Namibia and Botswana. The systems are found to 
predominantly occur during the months of November-February, 
with maximum activity occurring in November and December. 
Blamey and Reason (2013) showed MCCs can contribute up to 
20% of the summer rainfall over north-eastern South Africa and 
southern Mozambique. 

 
Air mass thunderstorms 

These are deep convection systems that develop when the 
growth of cumulus clouds are sustained by a combination of 
diurnal heating and low-level moisture convergence from either 
mesoscale or synoptic forcing. Air mass thunderstorms bring a 
substantial portion of the summer rainfall over much of southern 
Africa, especially over the Highveld of South Africa where they 
are accompanied by hails (Smith et al., 1998). 

 
Tornadoes 

Tornadoes are violent rotating columns of air extending from a 
thunderstorm. Tornadoes occur over eastern South Africa and 
can lead to heavy rainfall, severe damage and sometimes loss 
of life (de Coning and Adam, 2000). 

 
Terrain-induced  
circulations 

The complex terrain of southern Africa leads to a variety of other 
local / mesoscale circulation systems that are important to local 
rainfall. For example, Nocturnal low-level jets induce night-time 
rainfall over Botswana and Namibia (Monahan et al., 2010). 

Teleconnection 
 
Madden Julian 
Oscillation (MJO) 

The Madden-Julian oscillation (MJO), an intra-seasonal (30- to 
90-day) variability in the tropical atmosphere, is a traveling 
pattern that propagates eastward at about 4 to 8 m/s through the 
atmosphere over the warm parts of the Indian and Pacific 
oceans. It forms and is sustained by a large-scale coupling 
between atmospheric circulation and tropical deep convection. A 
strong 30-60 day periodicity has been identified in southern 
Africa rainfall. MJO activities have be shown to influence rainfall 
and wind oscillations over Tanzania (Kijazi and Reason, 2005; 
Mapande and Reason, 2005), TTTs over southern Africa (Hart et 
al., 2013), tropical cyclone tracks over the western Indian Ocean 
(Xie et al, 2002; Annamalai et al., 2005; Malan et al., 2013), and 
convection over southern Angola / northern Namibia (Hermes 
and Reason, 2009b).    
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System Description and influence on rainfall 
Regional 
 
El Niño – Southern 
Oscillation (ENSO) 

ENSO is an irregularly periodic variation in winds and sea 
surface temperatures over the tropical eastern Pacific Ocean. 
The warming phase of ENSO is called El Niño and the cooling 
phase is known as La Niña. ENSO, which remains the dominant 
mode of inter-annual climate variability globally, is the mode with 
the greatest impacts on southern African summer rainfall 
(Lindesay, 1988; Rocha and Simmonds, 1997; Reason et al., 
2000; Cook, 2001; Reason and Jagadheesa, 2005). Although the 
relationship between ENSO and rainfall in Southern Africa is not 
linear, La Niña years are generally associated with wet 
conditions, whereas El Niño years are associated with dry 
conditions over the region (e.g. Ropelewski and Halpert, 1987; 
Kruger, 1999; McHugh and Rogers, 2000; Reason and 
Jagadeesha, 2005). 

 
Benguela Niño 

The Benguela upwelling system is caused by surface water 
located near the western coast of southern Africa being forced 
offshore by strong southerly winds and deeper cold water rising 
to the surface and replacing the warmer water (Rouault et al., 
2009). Although there is strong link between Benguela Niño and 
southwestern African rainfall (Hirst and Hastenrath, 1983; 
Nicholson and Entekhabi, 1986; Rouault et al., 2003b), but the 
relationship is strongly nonlinear and it also sensitive to 
magnitude of SST anomalies in the South West Indian Ocean 
(Hansingo and Reason, 2009; Reason and Smart, 2015). 

 
South Indian Ocean 
subtropical dipole 
(SIOD) 

SIOD is an inter-annual dipole event in the subtropical Indian 
Ocean. It has a positive phase characterised by unusually warm 
SSTs in the southwest Indian Ocean south of Madagascar and 
anomalously cool SSTs in the southeast Indian Ocean off 
Australia. SIOD is associated with high pressure anomalies in the 
mid-latitude South Indian Ocean. Positive IOD result in above 
normal rainfall over parts of southern Africa in the austral 
summer (Behera and Yagamata, 2001; Reason, 2001, 2002). 

 
Southern Annular Mode 
(SAM), also known as 
Antarctic Oscillation 
(AAO) 

SAM, the principal mode of atmospheric variability between the 
extra-tropics and high latitudes in the southern hemisphere, 
consists of an oscillation in atmospheric pressure between the 
Antarctic region and the southern mid-latitudes. A positive 
(negative) event is characterized by anomalously low (high) 
pressure over Antarctica and anomalously high (low) pressure 
over the mid-latitudes of the southern hemisphere. Gillett et al. 
(2006) found a positive association between the SAM and rainfall 
over south-eastern southern Africa while Rouault (2005) also 
found a negative association between SAM and winter rainfall 
over the western Cape region of South Africa. 
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4 SEASONAL RAINFALL FORECASTING APPROACHES FOR 
SA IN THE CONTEXT OF DROUGHT FORECAST 

4.1 Introduction 

From the point of view of objectives of this project, i.e. early warning system for hydrological 
drought at seasonal time scales, in a typical situation, the forecasted climate (i.e. variables 
such as rainfall and air temperature at surface) needs to be translated into hydrological 
responses (variables such as runoff or streamflow) or impacts with the aid of a hydrological 
model. 
 
The process of generating hydrological responses from forecast climate introduces a range of 
uncertainties arising due to the nature, assumptions and simplifications of hydrological models 
and intermediate steps such as downscaling and/or bias correction. Those uncertainties may 
dilute the skill of the hydrological forecast. Thus, in spite of the attention of the project being 
focused on hydrological responses, climatic variables have to be considered as a starting point 
for hydrological analyses, as only in this way one can understand and quantify the “cascade 
of uncertainty” involved in data processing and serial linking of a number of models. 
 
Considering the above, the following two broad framings to the forecast of hydrological drought 
as a basis for drought warning can be adopted: 
 
• Forecasts of rainfall as an input to a hydrological model, where the results of hydrological 

simulations are interpreted in terms of a drought warning. 
• Forecast of rainfall as a variable underlying the drought, and where forecast rainfall 

anomaly is interpreted in terms of a drought warning. 
 
This chapter considers the second of the above, and two (sub-categorized into three) different 
approaches to rainfall forecast at seasonal time scale have been analysed: 
 
• Numerical climate forecast based on climate models (section 4.3) 

o with output of these models taken “as is” (note that this does not preclude bias 
correction of climate model forecast) – this is based on NMME and 
Copernicus@ECMWF multi-model seasonal forecast ensembles (section 
4.3.1). 

o with output of these models statistically calibrated or downscaled to 
observations of rainfall (this process is different to the bias correction) – this is 
based on data from SAWS, SEAS5@ECMWF and CFSv2 single model 
seasonal forecast ensembles (section 4.3.2) 

• Statistical forecast based on rainfall monitoring and persistence of current rainfall 
anomaly (section 4.4) 

 
Forecast skill is the ability of that forecast to correctly forecast future conditions. Forecast skill 
is a characteristic of the forecasting system, but it also reflects predictability of a particular 
variable at a particular location at a particular time. Forecast skill is a key piece of information 
necessary to interpret results of a forecast.  
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Since forecasting systems differ in skill, this section is constructed around exploration and 
evaluation of skill of the three different forecasting systems in the context of their use to satisfy 
objectives of this project. This is, of course, in addition to the explanation of how each of the 
forecasting systems work. Prior to that, the skill measures adopted in this study (section 4.2) 
are described in more detail. 
 
It is worth noting at this stage, that the three approaches to seasonal rainfall forecast have 
been evaluated (and in case of statistical forecast based on persistent anomaly – developed) 
as this project was progressing and were somewhat guided by the availability of forecast data 
at the computing system of CSAG, one of the project partners. Data availability was influenced 
by activities external to this project. In particular, the full NMME and Copernicus@ECMWF 
forecast ensembles were only available to use in the last year of this project – 2019/2020. 
Prior to that, only data from NOAA CFS model contributing to the NMME was publicly 
available, while access to the ECMWF IFS model through a research licence. This project was 
not originally formulated to use these ensembles, and intended to use only dynamical 
forecasts from SAWS, CFS and SEAS5/ECMWF systems. These three systems were thus 
the basis for development of the statistically calibrated forecast. The NMME and 
Copernicus@ECMWF ensembles could not be statistically calibrated during this project, as 
this task exceeds time and funding available here. These forecasts were therefore use “as is”. 
 

4.2. Measures of forecast skill 

There are a large number of measures of forecast skills that are suitable for different types of 
forecasts (e.g. deterministic vs. probabilistic) and different types of forecast variables (e.g. 
categorical, i.e. drought-no drought vs. continuous – i.e. rainfall amount). The skill measures 
adopted in this project are presented below. 
 

4.2.1. Deterministic forecast of a continuous variable 

A numerical ensemble forecast is not deterministic, but probabilistic in nature, as it is based 
on an ensemble of simulations that capture forecast uncertainty. Ensemble forecast can, 
however, be expressed in a deterministic way, when considering the ensemble median rather 
than all ensemble members. Deterministic skill is then assessed through correlation 
(Pearson’s or Spearman’s) between the observed variable and the median of the ensemble 
forecast of that variable.  
 
While deterministic forecasts are not directly useful in the context of generating a drought 
warning, the deterministic approach to forecast and to skill evaluation is the most transparent 
and the easiest to understand, compared to the probabilistic forecast and skill measures. 
Deterministic forecast were therefore adopted as one of the measures of forecast skill.  
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4.2.2. Probabilistic forecast of a (binomial) categorical variable 

Forecast in a categorical form, i.e. forecast a category, or a range of values, might be 
expressed in probabilistic terms, i.e. forecast of a category occurring will have a probability 
associated with it. A categorical forecast is the traditional way of presenting seasonal climate 
forecast, with three categories, or terciles. Tercile forecast distinguishes: the above normal 
conditions (e.g. rainfall higher than the 66th percentile of its historical distribution), the below 
normal conditions (falling below 33rd percentile) and the normal conditions (falling between 
the 33rd and 66th percentile of historical variability), and provides a probability of each 
category, e.g. 45%, 30% and 25% (these probabilities obviously have to sum to 100%). While 
the tercile forecast contains three categories, skill of such forecast is evaluated separately for 
each of the categories, treating them as a binomial events, i.e. the forecast skill is assessed 
for three cases: below-normal vs. “non-below-normal”, normal vs. “non-normal” and above-
normal vs. “non-above-normal”. 
 
From the perspective of this project, a forecast of below normal conditions is in fact a forecast 
of drought conditions, or a drought event that occurs on average once in 3 years. By analogy, 
one can consider a forecast of a 1 in 10 year drought event that would indicate rainfall lower 
than the 10th percentile of historical distribution. Such a forecast would be a binomial in a 
sense that it would consider a “non-event”, i.e. rainfall higher than the 10th percentile of 
historical distribution, without detailing how high the actual value will be. 
 
One of measures of skill of a binomial probabilistic forecast is Receiver Operating 
Characteristic (ROC) score. ROC score describes the ability of the forecast to discriminate 
between events and non-events. In a ROC curve the true positive rate is plotted in function of 
the false positive rate for different cut-off points of probability used to separate events from 
non-events (Figure 4.1). Each point on the ROC curve represents a pair of true and false 
positives corresponding to a particular probability decision threshold. The area under the ROC 
curve (AUC) is a measure of how well a parameter can distinguish between two diagnostic 
groups (e.g. first tercile vs. non-first tercile). ROC skill score relates ROC AUC for given 
forecast to the ROC AUC obtained under random forecast. ROC skill score value of 1 denotes 
a perfect forecast, ROC skill score of 0.5 indicates that forecast is not better than a random 
guess.  
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Figure 4.1: Example ROC curve for probabilistic event forecast 

 

4.2.3  Deterministic forecast of a (binomial) categorical variable 

While a probabilistic forecast of a drought event might have its merit in many contexts, as it 
allows for a context specific interpretation of probability associated with an event (e.g. in some 
context, drought preparing action might be triggered by when there is a 30% probability of a 
drought occurring, while others, less risk averse ones, might require a higher probability, say, 
50%. In spite of this, a probabilistic event forecast remains difficult to communicate and often 
to understand. An alternative to such forecast is a deterministic event forecast, i.e. a statement 
– a drought will or will not occur. Similarly to the deterministic forecast of a continuous variable, 
such a forecast statement can be obtained from a probabilistic forecast assuming a certain 
threshold probability that allows converting the probabilistic forecast into an (apparently) 
definitive statement. In this case the producer of the forecast imposes their idea of what the 
probability cut off threshold, and thus risk (or uncertainty) tolerance of the user is. 
 
A deterministic binomial forecast yields results that are relatively easy to interpret in terms of 
skill – one can relatively easily evaluate number of hits (event occurred and was forecast), 
correct negatives (event did not occur and was not forecast), misses (event occurred but was 
not forecast) and false positives (event was forecast, but did not occur). That is often present 
in the form of a contingency table (Figure 4.2). 
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a.  

b.  
Source: https://www.cawcr.gov.au/projects/verification/ 

 
Figure 4.2: Schematic of contingency table for binomial event forecast,  

 
Expressing skill of a deterministic binomial forecast in a single, numerical value, is, however, 
surprisingly difficult. While an intuitive measure of skill accuracy would be for example “percent 
correctly forecast”, i.e. ratio of hits to total events, such a measure does not take into account 
such a factor as the number of false positives. To illustrate the problem with the “percent 
correctly forecast” as a skill measure, a forecast that issues a warning every time, would 
correctly forecast 100% of events, but it would obviously be very poor. Other skill measures 
suffer similar deficiencies, and these deficiencies magnify if forecast is of rare events (i.e. if 
there are considerably more non-events than events as is the case in severe droughts). 
 
There is a plethora of skill measures that express skill of deterministic binomial forecast – see 
for example. 
 https://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts. 
 
Most of the commonly used skill measures are sensitive to the climatological frequency of the 
forecast events and are thus not applicable to rare events (as is the case with droughts). 
 
The most universal and robust skill measure that is applicable to forecast of rare events is 
Odds Ratio Skill Score (ORSS). Its main drawback is that ORSS is not determined when any 
of the rows or columns in the contingency table are completely zero, which might happen in 

https://www.cawcr.gov.au/projects/verification/
https://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts
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operational forecast post-processed to derive rare events. This simply indicates that the 
forecast is not realistic. 
 

 
 
 

 

4.3. Numerical dynamical forecasting based on climate models 

Dynamical numerical modelling of the global climate system is currently the most advanced 
and sophisticated way of generating climate forecast at the seasonal time scale. Numerical 
forecasting models are similar in nature to the global climate models used in generating 
climate change projections, although they have several major conceptual differences.  
 
The main characteristics of forecast models are as follows: 
 
• Historically forecasting models were atmosphere only and relied on an independent 

modelling of expected future evolution of sea surface temperatures to define their 
boundary conditions. That modelling could be relatively simple – e.g. assume 
persistence of relative anomalies observed at the time of issuing the forecast. However, 
currently, forecast models are mostly coupled, i.e. they include fully comprehensive sub-
models simulating oceanic circulation. As such, coupled models rely on “internally” 
generated evolution of sea surface temperatures initialized on the state observed at the 
time of issuing the forecast.  

• Seasonal forecast models are gridded and have relatively coarse grid – in the order of 
0.25 to 1.5 degrees (~25km to 150km) in size.  

• Forecast models generate a comprehensive set of data on variables reflecting the state 
of the global climate system (i.e. distribution of pressures, humidity, winds and 
temperatures at various levels in the atmospheric column), as well as variables at the 
earth’s surface, such as rainfall, air temperature, soil moisture. 

• Forecast model output is, similarly to the output of global climate models, often 
characterized by biases, i.e. there are systematic differences between modelled values 
of atmospheric variables and observations. The implication is that output of forecast 
models has to be either bias-corrected, or subject to further process of downscaling or 
calibration, or used in a relative way, i.e. as % departure from the climatological mean. 

• Forecast models are typically initialized from observed state of the climate system, i.e. 
the values of the physical variables (such as air temperature, humidity, pressure) in a 
model at the start of the forecast are generated from the actual observed data through a 
process of interpolation or data assimilation. 

• Forecast models are run as an initial condition ensemble, i.e. the initial conditions are 
perturbed, so that individual simulations start with minimally different values, with 
differences between individual simulations growing with simulation time. That process is 
intended to allow capturing the so-called initial condition uncertainty that reflects the 
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chaotic character of the climate system. Most forecast systems generate a 10 member 
ensemble, but some run a 25- or even 50-member ensemble.  

 
The implication of the ensemble approach is that there is no single forecast of a particular 
variable over a particular time, but rather a range of variables is forecasted. It is not possible 
to select “the best” ensemble member, as each ensemble member represents a future that is 
possible under given forcing, and all of these futures are equally probable. This pertains, 
however, only to the “model space”. There might be (and are) differences between “model 
space” and the real world. These differences reflect errors of a particular model, but also the 
effects arising from the model-independent levels of climate predictability in a particular 
location and season (section 3.1). 
 

4.3.1. Statistically-calibrated (Model Output Statistics or MOS) dynamical seasonal 
forecast 

Forecast climate models, as mentioned above, generate information (such as rainfall) as an 
average over their large computational unit (grid) – typically of spatial scale between 100 and 
250 km. This does not take into account that surface climate varies at much smaller spatial 
scales, in some situations as low as 10s of metres. Hydrological models, in turn, require 
information at spatial scales that are “in-between”, i.e. in the order of 1km to tens of km. 
 
Also, as mentioned above, data output by climate forecast models are often biased, i.e. 
systematically offset compared to observations. This is an intrinsic deficiency of climate 
models that is not simply reducible. 
 
In order to account for climate model biases and allow derivation of climate data at smaller 
spatial scales output of climate models is often downscaled. It is worth noting that downscaling 
is not the same as interpolation, and also conceptually different from bias correction. 
  
The process of downscaling relies on the relationship between large scale atmospheric 
circulation features and locally specific responses of surface variables such as rainfall. That 
process can be formalized through a nested, small scale climate model (dynamical 
downscaling), or establishing a statistical relationship between drivers and responses 
(statistical downscaling). In both situations, inputs to downscaling are large scale atmospheric 
variables, the output is a climate variable at local scale. As such, the process in principle does 
not involve using the actual surface variable values (at that model’s grid) generated by the 
forecast climate model. 
 
In contrast, the process of bias correction involves the actual surface variable generated by 
the forecast climate model, and is simply a process of changing some statistical properties of 
either that model-generated variable, or of that variable observed at local scale. 
 
In this study, the so-called Model Output Statistics (MOS) approach (Wilks, 2001; Paeth et al., 
2011) has been adopted. This is a sensu stricto statistical downscaling procedure, and such 
a process is often termed “statistical forecast calibration”.  
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4.3.1.1. Implementation of the MOS downscaling/calibration of dynamical forecasts 
 
It was decided to focus on bespoke statistical downscaling of several available seasonal 
forecast products and used as a reference the hydrological and climate datasets created within 
the Water Resources 2012 study (Bailey and Pitman, 2016, thereafter WR2012). In the study, 
the monthly rainfall obtained from WR2012 for the period of 1983-2009 were used.  
 
Historical observational data 
The analyses are based on aggregate rainfall dataset covering South Africa that is a part of 
WR2012. That study consolidated observational rainfall and streamflow data in a hydrological 
modelling framework to derive regionally- and time-consistent description of surface water 
resources in South Africa. In that, the area of South Africa was divided into 1944 quaternary 
(fourth-order in a hierarchical classification system) catchments. Station-based observations 
of rainfall from over 1700 stations were interpolated to generate monthly areal rainfall for 456 
rainfall regions each of which encompass one or several quaternary catchments. Rainfall 
extracted for these rainfall regions was used. The WR2012 dataset spans the period of 1920-
2009, but only the 1983-2009 data was used in this study. 
 
Seasonal forecast data 
Three operational seasonal climate forecasts were used: 
 
• A forecast generated by South African Weather Service (SAWS) using a fully coupled 

ECHAM4.5-MOM3-SA global climate model (Beraki et al., 2014). 
• NOAA’s Climate Forecasting System v. 2 (CFSv2, Saha et al., 2014, freely available   

through cfs.ncep.noaa.gov) 
• ECMWF forecast based on IFS atmospheric model, described in details here: 

https://www.ecmwf.int/en/forecasts/documentation-and-support/long-range,  
• and available from https://www.ecmwf.int. At the time of implementation (~2018) the 

ECMWF IFS model results were not publicly available, and this project had access to 
these data through research licence only.  

 
Adopted downscaling methodology procedure 
The downscaling procedure adopted in this study is one of MOS approaches – Principal 
Component Regression (PCR). The use of that procedure follows earlier downscaling work 
carried out in southern Africa by Landman et al., 2001, Landman et al., 2012, and Muchuru et 
al., 2014, and Archer et al., 2019.  

In the PCR MOS, the predictor is based on 850mb geopotential height fields (z850) for the 0-
55E, 0-45S domain simulated by each of the forecast systems as a three-months forecast 
initialized in the beginning of each of the DJF, MAM, JJA and SON seasons. That large scale 
z850 field captures the configuration of main rain-influencing large-scale circulation features 
affecting rainfall over southern Africa, namely the southern African thermal low, Angola Low, 
South Indian Ocean high, South Atlantic high and mid latitude lows. For summer rainfall, these 
features affect rainfall through influencing the characteristics of the so called easterly wave in 
general, and the low-level tropical and South Indian Ocean easterlies in particular. For winter 
rainfall, these features express the main driving forces of the westerly wave and mid-latitude 

https://www.ecmwf.int/en/forecasts/documentation-and-support/long-range
https://www.ecmwf.int/
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cyclones. That large-scale field has been shown to explain a considerable proportion of 
variance of local rainfall in the southern Africa region (e.g. Landman, 2001: Wolski et al., 
2017). 
 
The forecast ensemble mean of z850 field is subject to dimensionality reduction using principal 
component analysis (PCA), and significant principal components are selected using n-rule 
(Peres-Neto et al., 2005). A MOS multiple regression model is calibrated individually for each 
of the quaternary catchments, using the season’s rainfall total as predictand, and the scores 
of up to 10 significant PCs as predictors.  
 
4.3.1.2. Forecast skill 
To assess the level of predictive skill of the forecast, use a cross-validation approach was 
used, i.e. the level of skill attained when the calibrated model is applied to data that is not used 
in calibration was assessed. There are several ways of implementing the cross-validation 
procedure. Typically, one would use a “split-sample” approach, when the available data is split 
into two groups, and one is used to calibrate the model, while the other one is used for 
validation and calculation of skill measure .The “leave one out” approach was adopted, i.e. 
leave one year was left out of the available time series and the MOS model calibrated on that 
sub-sample. The calibrated model was then used to predict the left out year. The process was 
repeated for each year in the available dataset and the skill measure constructed based on 
the prediction of each of the left-out years. 
 
Results of a split-sample calibration-validation procedure for an individual rainfall region are 
illustrated in Figure 4.3. 
 
Results of assessment of skill of downscaled seasonal forecasts for SAWS forecast are 
presented in Figure 4.4, for CFSv2 forecast in Figure 4.5 and for ECMWF forecast in 
Figure 4.6 (DJF season only).  
 
The results can be summarized as follows: 
 
• The skill of the downscaled forecast varies strongly between seasons, with DJF and JJA 

displaying some levels of skill, and the transitional seasons of MAM and SON showing 
skill only locally, skill levels are relatively low in general, at best reaching 0.6 in terms of 
Pearson’s correlation, and 0.7 in terms of ROC scores,  

• There is some consistency between various forecast systems, i.e. the levels of skill and 
spatial regions with skill are relatively similar across the three forecasting systems, 
although there are minor differences too. In all analysed forecasts, levels of skill occur 
in DJF in the summer rainfall region, but there is virtually no skill in JJA in the winter 
rainfall region.  
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Figure 4.3: Summary of results of calibration and validation for a selected quaternary 

catchment using a split-sample approach 
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Figure 4.4: Skill measures for seasonal forecasts based on PCR MOS downscaling of 

SAWS (ECHAM 4.5) forecast to WR2012 rainfall data in four 
climatological seasons 
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Figure 4.5: Skill measures for seasonal forecasts based on PCR MOS downscaling of 

CFSv2 forecast to WR2012 rainfall data in four climatological seasons 
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Figure 4.6: Skill measures for seasonal forecasts based on PCR MOS downscaling of 

ECMWF forecast to WR2012 rainfall data. DJF season 

 

4.3.2. Multi-model ensemble of dynamical seasonal forecast models 

In the course of this project, two seasonal forecast multi-model ensembles have become 
publicly available – the North America Multi Model Ensemble (NMME) (Kirtman et al., 2014) 
and Copernicus@ECMWF ensemble. These ensembles include two of the models used in 
section 4.3 – CFS v.2, and ECMWF IFS (called here SEAS5). It is worth noting that a “multi-
model ensemble” encompasses a group of forecast models, each of which generates an 
ensemble forecast (the so-called initial condition ensemble), i.e. it generates multiple possible 
time series of future climate variables.  
 
These two multi-model forecast ensembles provide forecast data regularly – every month, and 
also provide a set of historical forecasts (the so-called retrospective forecasts) that allow 
evaluation of the quality of the each of the forecasting model. All models in both ensembles 
provide at least surface temperature and rainfall data on the daily time scale and extending 3-
9 months ahead of each forecast date. The forecast models are of spatial resolution (1 deg, 
~100 km) that is low enough to allow a direct use of forecast rainfall and temperature data on 
the monthly basis in further analyses.  
 
These ensembles are the basis for operational analyses of seasonal forecast globally issued 
by the hosting institutions – ILRI and ECMWF. In that both institutions rely on the strength of 
the multiple models, and, at the highest level of aggregation of information, synthesize all 
individual model forecasts into a single, multi-model statement. 
 
As such, these ensembles constitute a state-of-the-art of seasonal forecasting globally. In this 
project, it was therefore decided to capitalize on the availability of forecast data from these 
multi-model ensembles and undertook synthesis of the forecast data into the specific context 
of this project. It is recommended that these ensembles should become the primary source of 
information towards the forecast of the prospects of drought.  
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It is suggested that the ultimate strength of the multi-model forecast can be revealed through:  
 
• Calibration of the forecast to observations (i.e. MOS post-processed – see section 4.3.1), 

and,  
• Analyses of the forecast models as an ensemble rather than individually. 

 
Achieving this was not possible within the framework of this project. In this study the focus 
was on the main features of the ensembles, processing of forecast data into the data flow 
enabling the establishing an early warning system for hydrological drought, and on evaluation 
of their skill of individual forecast models.  
 

Multi-model ensemble seasonal forecast data 
NMME forecast data are available through the University of Columbia 
(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and included forecasts from 
seven models coded: 
 
• GFDL-FLOR 
• GFDL 
• NCEP-CFSv2 
• NCAR-CESM1 
• CanCM4i 
• GEM-NEMO 
• NASA-GEOSS2S 

 
Copernicus@ECMWF ensemble is available through Copernicus Climate Data Store: 
http://cds.climate.copernicus.eu, and includes forecast from four forecast models (available 
in mid-2019, but seven are available in Nov 2020): 
 
• ECMWF IFS 43.r1 – coded here SEAS5 
• Meteo-France ARPEGE 6.4 model – coded here System7 
• DWD ECHAM 6.3 model coded here GCFS v.2.0 
• CMCC CESM-CAM model, coded here SPS3 

 
Apart from the above, Copernicus@ECMWF ensemble includes CFSv2 (the same as 
NMME), UK Met Office HadGEM3 system (at the time these analyses were conducted it did 
not have comprehensive dataset allowing its incorporation here) and JMA MRI-CPS2 model 
(available only in November 2020). 
 
Individual models in each of the ensembles differ in the atmospheric, land surface and ocean 
sub-models used, in the process of initialization (staggered, or perturbed), in spatial resolution 
(1-2 deg), duration of the simulation (up to 12 months) and size of the ensemble (3-50 
members). Details of each of the Copernicus@ECMWF models can be found at  
https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+seasonal+multi-system, 
while details of the models can be found through links on the data source web page 
(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). Models contributing to each of 

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
http://cds.climate.copernicus.eu/
https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+seasonal+multi-system
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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the ensembles are subject to periodic updates to newer versions, and as a result model names 
change from time to time.  
 
Both ensemble forecasts are issued every month, with NMME ensemble forecast available on 
the 5th of each month, while the Copernicus@ECMWF ensemble available on the 13th.  
 
As mentioned above, forecast data from both ensembles are generated every month by the 
modelling centres generating individual forecasts. Retrospective forecasts are available for all 
the models for the period of 1993-present for the Copernicus@ECMWF ensemble, and 1983-
present for the NMME ensemble.  
 
Pre-processing of data for skill assessment 
 
The following, semi-automated procedure has been implemented on the computing system at 
CSAG, UCT: 
 
• A subset of monthly forecast data (rainfall and air temperatures) for each of the forecast 

models was downloaded for all available retrospective forecasts. That subset covers the 
area of southern Africa (Lat: 45S-0S, Lon: 0E-55E), and the first three months of the 
forecast, starting on the month on which a forecast (or retrospective forecast) is issued 
(so for example Jan,Feb,Mar for forecast issued in January. 

• All available ensemble members are downloaded. 
• The data were organized into a uniform file and variable naming convention. 
• Data were converted from gridded format to area-average over the WR2012 rainfall 

regions and WR2012 quaternary catchments. This was done by intersecting 
catchment/region polygons with the gridded data and calculating area-average of grid 
cell values over the polygons.  

• Data at the polygon level were then bias-corrected using a month-specific quantile 
mapping function. That function is determined based on the available retrospective 
forecasts. In that, it is considered that long-term distribution of a variable in all forecast 
ensemble members should correspond to the long-term distribution of that variable in 
the observed data. This approach allows for the individual forecasts to diverge from 
climatology both in terms of ensemble median and ensemble members. The GPCC 2018 
data was used as the historical observed dataset. 

 
Forecast skill  
In order to calculate, the following indices were calculated from the retrospective forecast 
data:  
 
• Ensemble median of three-month mean rainfall for each model ensemble. 
• Ensemble median of mean monthly rainfall for the three months of the forecast for each 

model ensemble. 
• Probability of the three-month mean rainfall in each model ensemble to fall: 
• Within each of the three terciles (below-, above- and normal) of the observed three-

month mean rainfall. The probability of the below-normal rainfall is equivalent to the 
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probability of 1 in 3 year drought below 20th percentile of the observed three-month 
mean rainfall, which is equivalent to 1 in 5 year drought, and below 10th percentile of the 
observed three-month mean rainfall, which is equivalent to 1 in 10 year drought. 

 
The probabilities were calculated by fitting a normal distribution function to the distribution of 
the individual ensemble members values. Considering that most of the models in the multi-
model ensembles have only 10 ensemble members, more extreme drought levels were not 
used.  
 
These indices were then used to evaluate the following forecast skill measures: 
 
• Pearson’s correlation between ensemble media and observed rainfall (as an expression 

of deterministic skill of the forecast) 
• ROC skill score for above-, normal- and below-normal rainfall, as well as for 1 in 5 year 

and 1 in 10 year drought. 
 

Considering that the “grand ensemble” consists of 11 models, and 6 skill measures for each 
of the 12 calendar months and for each of the 1948 quaternary catchments were evaluated, 
the output of the process is not easy to present in a digestible form. 
 
A visualisation of the two sets is presented below. 
 
• Maps showing monthly Pearson’s correlation and ROC skill scores for 1 in 3, 1 in 5 and 

1 in 10 year drought for one of the models – ECMWF SEAS5, for the entire country 
(Figures 4.7 to 4.10), but also for the Western Cape and for Limpopo (Figures 4.11 to 
4.12).  

• A summary of the skill scores for each model and each month of the forecast for 
quaternary catchments falling within the Inkomati basin – quaternaries within region X of 
WR2012 (Figures 4.13 and 4.14). 
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Figure 4.7: Deterministic forecast skill 

 
This Figure presents correlations between observations and ensemble median at the scale of 
quaternary catchments, for forecast of three month rainfall mean, issued on each of the 
calendar months, ECMWF SEAS5 system 
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Figure 4.8: Probabilistic forecast skill (ROC score)  

This Figure presents forecast skill at the scale of quaternary catchments, for forecast of below-
normal rainfall (1 in 3 year drought), issued on each of the calendar months, ECMWF SEAS5 
system. Forecast is better than random guess when ROC score is > 0.5 
 

 
Figure 4.9:  As for Figure 4.8 but for forecast of 1 in 5 year drought 
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Figure 4.10:  As for Figure 4.8 but for forecast of 1 in 10 year drought 

 

 
Figure 4.11: As for Figure 4.7 but for the Western Cape only 
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Figure 4.12:  As for Figure 4.7 but for the Limpopo only 

 

 
Figure 4.13: Deterministic forecast skill (Pearson’s correlation) 

 
Figure 4.13 shows the forecast skill of three month rainfall mean, issued on each of the 
calendar months by each of the ECMWF and NMME ensemble models for the Inkomati basin. 
Each distribution illustrates a range of forecast skill in quaternaries of the Inkomati basin. 
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Figure 4.14: Probabilistic forecast skill (ROC score) 

 

Figure 4.14 shows the forecast skill at the scale of quaternary catchments, for forecast of 
below-normal rainfall (1 in 3 year drought), 1 in 5 year drought, and 1 in 10 year drought, 
issued on each of the calendar months by each of the ECMWF and NMME ensemble models 
for the Inkomati basin. Each distribution illustrates a range of forecast skill in quaternaries of 
the Inkomati basin. Forecast is better than a random guess when the ROC score is > 0.5. 
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4.4. Statistical forecast of end-of-season anomalies based on anomaly 
persistence and teleconnections 

4.4.1. Introduction 

The approach presented here was originally developed by P. Wolski and P. Johnston for the 
forecast of rainfall anomaly during the 2015-2017 Cape Town Drought, and published as a 
popular science blog https://www.groundup.org.za/article/will-there-be-more-rain-winter/ and 
http://www.csag.uct.ac.za/2018/03/15/will-there-be-more-rain-this-winter/ 
 
The approach is based on observations illustrated in Figure 4.15, that rainfall anomaly 
observed in the beginning of the season tends to persist throughout the season, particularly 
when considered in terms of accumulated, or total season’s rainfall. 

  

 

Figure 4.15: Illustration of relationship between end of season accumulated rainfall 
and current rainfall anomaly 

 

https://www.groundup.org.za/article/will-there-be-more-rain-winter/
http://www.csag.uct.ac.za/2018/03/15/will-there-be-more-rain-this-winter/
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The top row of Figure 4.15 illustrates monthly accumulated rainfall for each year in a 47 year 
period. Middle row from top illustrated how (categorical) anomaly in the end of April diversifies 
accumulated rainfall “trajectories”. The bottom row shows the same but for the end of July. 
 
There could be an underlying climate factor that causes lower (or higher) rainfall, and that 
persists throughout seasons. In this way, the amount of rainfall in the beginning of the rainy 
season is an indicator of the amount of rainfall the rest of the season receives. However, the 
majority of the effect arises due the fact that this considers the accumulated rainfall figures. 
As a result, an anomaly occurring earlier in the season has bearing to the total rainfall at the 
end of the season. The role of the actual anomaly increases as the season progresses – thus 
anomaly in the beginning of the rainy season has little implications to the total rainfall that 
year, but anomaly towards the end of the season is not likely to be reflected in the annual 
total.  
 
This observation lends itself to the formulation of a probabilistic forecast of end of the season 
anomaly as a function of the anomaly in the month of forecast in two forms. 
 
• Categorical forecast – probability of above-, below- and normal rainfall total based on 

current tercile. This forecast is simply formulated by creating contingency tables of 
number of cases when in historical observations an association between current tercile 
and end of the season tercile occurred. This contingency table can then be presented in 
terms of probabilities. A series of contingency tables leads to a schematic as in Figure 
4.16. 

• Forecast of rainfall anomaly based on linear regression between current and end of the 
season anomaly. The basis for this forecast is illustrated in Figure 4.17. In the forecast, 
a linear regression is constructed based on historical data and parameters of the 
regression equation are used for prediction based on a given data. Since prediction using 
linear regression have an associated prediction error, that can be used to  formulate 
prediction probabilities for different categories of anomalies, i.e. below-, above- or 
normal, or other, more relevant from the point of view of drought – e.g. 1 in 10 year 
drought. 

 
Only the latter is described here in detail. 
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Figure 4.16: Simple categorical forecast of end of the season anomaly of total rainfall 

based on the current anomaly of accumulated rainfall 

 
This particular forecast shown in Figure 4.16 is for a sub-catchment located in the winter 
rainfall region, with the extended rainy season spanning April-September. End-of-the season 
drought can be predicted with a considerable probability already in April. 
 

 

Figure 4.17: Correlation between the end-of-season and current anomaly of 
accumulated rainfall in a sub-catchment in the winter rainfall region 

 

4.4.2. Forecast of rainfall anomaly based on linear regression between with current 
rainfall anomaly 

In the basic version of the forecast, a linear regression is constructed based on historical data 
and parameters of the regression equation are used for prediction based on a given data 
obtained from monitoring.  
 

PAseason = amPAm+bm+m 
 
where PAseason is the end of season anomaly, PAm is the anomaly of accumulated rainfall in a 
given month, am and bm are parameters of the regression model that are specific to the month 
(and obviously location), and εm is the model error.  
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The forecast is then simply based on 
 

PAseason,fcst = amPAm,obs+bm+m 
 
Where index fcst indicates the value that is forecast, and index obs indicates an observed 
value of anomaly in a given calendar month. 
  
Since the prediction using linear regression have an associated prediction error (in the 
simplest linear regression case considered to be normally-distributed), that can be used to 
formulate prediction probabilities for different categories of anomalies, i.e. below-, above- or 
normal, or other, more relevant from the point of view of drought – e.g. 1 in 10 year drought. 
 
The extended version of the forecast includes additional variables. Since it is known that 
seasonal rainfall anomalies in South Africa are associated with the state of global modes of 
variability, such as ENSO, AAO and IOD, and that these modes drive seasonal predictability 
of rainfall (see Chapter 3), they were included as additional explanatory variables in the 
regression model.  
 

PAseason = amPAm+cENSOm+bm+m 
 

where ENSOm is the value of ENSO index in month m. 
 

Implementation of the model 

The forecast model has been implemented at the WR2012 quaternary catchments using 
gridded blended satellite-station rainfall product – CHIRPS v. 2.0 (Funk et al., 2014). The 
monthly gridded data over the 1970-2018 period were interpolated to the level of WR2012 sub 
catchments. The regression model was developed for each individual catchment. Because 
South African rainfall is characterized by three seasonality regimes – summer, winter and all-
year-round, the model was set up considering local season for each of the quaternaries. That 
differentiation was obtained by hierarchical clustering of standardized rainfall climatology into 
three classes. The Jan-Dec season for winter rainfall regime was used, and the July-June 
rainfall season for summer and all-year-round rainfall regime. 

 

Interrogating the forecast model 

The performance of the statistical forecast model for various months can be interrogated by 
considering the amount of variance the regression model explains in the end of the season 
accumulated rainfall anomaly. In simple terms: 
 

VPAseason,obs = VPAseason,model+V 
 

where VPA is the variance of observations, regression fitted values and regression residuals 
respectively. 
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Furthermore VPAseason,model can be disaggregated into VPAseason,committed and VPAseason,persistent,  

Considering that: 

PAseason = PAm+PAnon-commited 

and  

PAnon-committed = dPAm+PAresidual 
 

and that VPAcommitted is the variance of PAm, and variance of PAresidual is Vε.  

The variances can then be calculated and plotted as in Figure 4.18. It is clear from this figure 
that the majority of the explanatory power arises from what is called the “committed” anomaly, 
i.e. anomaly that arose in a given month.  

 

Figure 4.18: Separation of variance explained by basic linear model in end of the 
season anomaly into components 

 
The approach can be applied to the extended model that includes ENSO, and the results are 
shown in Figure 4.19. That figure illustrates that in the case of this particular quaternary 
catchment, the role of ENSO is limited – including it in the regression model increases 
explanatory power of that model by ~4-5% in May and June only. 
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Figure 4.19: Separation of variance in end of the season anomaly into components 

 
The components in Figure 4.19 are explained by an extended linear model that includes ENSO 
as an explanatory variable 
 
A comprehensive mapping of the role of various variance components in the regression model 
for the entire country is illustrated in Figures 4.20 and 4.21 Identified homogeneous regions 
differ relatively little in the partitioning of variance, with the differences highlighting minor 
differences in rainfall seasonality within each of the rainfall regimes. There are also some 
differences in terms of the role of persistence and ENSO, but in general, neither ENSO, nor 
persistence of anomaly do not explain more than 10% of variance in the end-of-the-season 
anomaly. 
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Figure 4.20a: Regions of similar separation of variance explained by a regression 
model (with ENSO) 
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Figure 4.21b: Regions of similar separation of variance explained by a regression 
model (with ENSO) 

 

Figure 4.20a and 4.20b show the end of the season rainfall anomaly in the summer and all-
year-round rainfall regimes. Regions were defined by hierarchical clustering of variance 
component curves. The colours in the map (Figure 4.20b) correspond to the colours in the 
summary graphs (Figure 4.20a). Each line in the summary graphs represents single 
quaternary catchment. 
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Figure 4.22: As Figure.4.20, but for the winter rainfall regime 
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Skill of the forecast model 

The skill of the forecast was assessed formally using ROC skill score. Figures 4.22 and 4.23 
show skill of the forecast (in the version including ENSO) in predicting the below-normal 
conditions, or in other words a 1 in 3 year drought. 
 

 
Figure 4.23: Skill of the statistical forecast of the end of the season rainfall anomaly 

expressed in terms of ROC score 

 
The skill shown in Figure 4.22 is the ROC score for the below-normal category (or 1 in 3 year 
dry conditions), for summer and all-year-round rainfall regime 
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Figure 4.24: As for Figure 4.22, but for winter rainfall regime 

 
The website http://cip.csag.uct.ac.za/forecast/ was developed as part of this project to spatially 
present the GCM data and the statistical analysis of all data sets described above.  See Figure 
4.24. 
 

 

Figure 4.25: CSAG rainfall forecasting website 

http://cip.csag.uct.ac.za/forecast/
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5 STREAMFLOW AND STORAGE MONITORING AND 
PREDICTABILITY 

5.1 Introduction 

While streamflow is a popular indicator of drought since it is easily observed by hydrologists, 
water managers and even the general public with the advent of websites which make this 
information readily available, it is of limited practical application in South Africa. The reason 
for this is that South Africa experiences highly variable and spatially skewed distribution of 
streamflow and hence relies on numerous dams to supply bulk of water to cities, industries 
and irrigators. The exception is rural communities who rely directly on streamflow and are 
therefore very vulnerable to drought. Predictably of streamflow is therefore addressed in this 
report within the context of run-of-river abstraction, which due to the nature of South African 
river entails short-term predictability. 
 

5.2 Short-term streamflow predictability 

5.2.1 Literature review 

It is common to study the characteristics of streamflow-related droughts on seasonal time 
scales (Vidal et al., 2010). Hydrological predictability at seasonal lead times (1-6 months) 
comes from knowledge of initial hydrological conditions (soil moisture, groundwater and 
streamflow) and seasonal climate forecast skill of meteorological variables (Shukla et al., 
2013). However, streamflow droughts also appear on shorter time scales (Tallaksen et al., 
1997).  Some of the short, consecutive events might be connected to one prolonged drought, 
nevertheless they can cause damage to certain sectors, especially rural communities 
dependant on river flow, and are worthwhile to consider individually. Streamflow drought 
forecasts on time scales up to one month are potentially useful for hydropower generation, 
irrigated agriculture, water quality, navigation and tourism, in general, all sectors that can use 
the information for upcoming streamflow drought events to take preventative action. For these 
sectors, skilful forecasts of streamflow droughts could help to prevent or mitigate the 
consequences of water shortage (Steinemann, 2006). 
 
In the past, numerous studies have investigated the contributions of the initial hydrologic 
conditions in seasonal hydrologic predictability in different regions in the world.  Maurer and 
Lettenmaier (2003) used multiple regression to identify the sources of hydrologic predictability 
in the Mississippi River basin and found that soil moisture was the primary source of runoff 
predictability at one (1) month lead time in all seasons except the summer months over 
western mountainous region, where snow dominated the runoff predictability. In a similar study 
using Principal Component Analysis, Maurer et al. (2004) investigated the controlling factors 
to the runoff predictability over all of North America and concluded that soil moisture and snow 
water content could provide useful levels of seasonal hydrologic predictability beyond what is 
available via climate only. Berg and Mulroy (2006) utilized a residual analysis approach and 
found that a statistically significant number of stations in the Nelson River basin in Canada 
even macroscale estimates of initial soil moisture could be used to improve streamflow 
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predictability at one (1) to three (3) months lead time.  Likewise, Mahanama et al. (2008) 
showed that in the tropical island country of Sri Lanka, initial soil moisture and monthly runoff 
contribute to the seasonal hydrologic predictability up to 3 months lead time. They found the 
correlation between initial soil moisture and monthly runoff to be highest at 1 month lead time 
mainly during April-May June and July-August-September. Based on their results, they 
concluded that improving estimate of initial soil moisture is far more achievable that 
improvement of seasonal precipitation forecast skill.  More recently, Koster et al. (2010) and 
Mahanama et al. (2011) used suites of hydrological models to evaluate the contributions of 
soil moisture and snow water content to streamflow predictability across United States. These 
studies indicated that the contribution of initial hydrologic conditions to seasonal hydrologic 
predictability was consistent among hydrologic models. All the studies citied above have 
addressed sources of seasonal hydrologic predictability and their relative influence. However, 
as far as can be ascertained, only Shukla et al.(2013) attempted to address this globally, 
where they found out that in the southern hemisphere, initial hydrologic conditions mainly 
dominate during forecasts periods starting 1 April and 1 July over arid regions and temperature 
dry winter regions. On the other hand, the study demonstrated that over equatorial humid and 
monsoonal climate regions the contribution of climate forecast skill is higher than the initial 
hydrologic conditions throughout most of the year. 
 
In the past, numerous studies have investigated the contributions of the initial hydrologic 
conditions in seasonal hydrologic predictability in different regions in the world.  Maurer and 
Lettenmaier (2003) used multiple regression to identify the sources of hydrologic predictability 
in the Mississippi River basin and found that soil moisture was the primary source of runoff 
predictability at 1 month lead time in all seasons except the summer months over western 
mountainous region, where snow dominated the runoff predictability. In similar study using 
Principal Component Analysis (PCA), Maurer et al. (2004) investigated the controlling factors 
to the runoff predictability over all of North America and concluded that soil moisture and snow 
water content could provide useful levels of seasonal hydrologic predictability beyond what is 
available via climate only. Berg and Mulroy (2006) utilized a residual analysis approach and 
found that a statistically significant number of stations in Nelson River basin in Canada even 
macroscale estimates of initial soil moisture could be used to improve streamflow predictability 
at 1 to 3 months lead time.  Likewise, Mahanama et al. (2008) showed that in the tropical 
island country of Sri Lanka, initial soil moisture and monthly runoff contribute to the seasonal 
hydrologic predictability up to 3 months lead time. They found the correlation between initial 
soil moisture and monthly runoff to be highest at 1 month lead time mainly during April-May 
June and July-August-September. Based on their results, they concluded that improving 
estimate of initial soil moisture is far more achievable that improvement of seasonal 
precipitation forecast skill.  More recently, Koster et al. (2010) and Mahanama et al. (2011) 
used suite of hydrological models to evaluate the contributions of soil moisture and snow water 
content to streamflow predictability across United States. These studies indicated that the 
contribution of initial hydrologic conditions to seasonal hydrologic predictability was consistent 
among hydrologic models. All the studies citied above have addressed sources of seasonal 
hydrologic predictability and their relative influence. However, as far as can be ascertained, 
only Shukla et al. (2013) attempted to address this globally, where they found out that in the 
southern Hemisphere, where South Africa is located, initial hydrologic conditions mainly 
dominate during forecasts periods starting 1 April and 1 July over arid regions and temperature 
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dry winter regions. On the other hand, the study demonstrated that over equatorial humid and 
monsoonal climate regions the contribution of climate forecast skill is higher than the initial 
hydrologic conditions throughout most of the year. 
 

5.2.2 Characterization of hydrological droughts 

Low-flow can be defined as a flow of water in a stream during prolonged dry weather. Droughts 
include low-flow periods, but a continuous seasonal low-flow event does not necessarily 
constitute a drought, although many researchers refer to a continuous low-flow period in one 
year as an annual drought.In general, two approaches to predict properties of low streamflow 
events in the long range can be discerned. First, stochastic approaches that relate the current 
state of a catchment and potential predictors to what has been observed in the past, to infer 
the likelihood of low streamflow within the prediction period.  These include regression 
techniques (Moreira et al, 2008), time series models (Bordi and Sutera, 2007) and neural 
network techniques (Morid et al., 2007). Hwang and Carbone (2009) used autoregressive 
models to predict drought indices and to quantify the uncertainty in the prediction. The second, 
less common approach for the long-range prediction of droughts involves a coupled 
atmospheric-hydrological model. Wood et al. (2002) employ monthly forecasts from a global 
atmospheric model to drive a grid-based hydrological model that produces reasonable 
predictions of streamflow up to several months in advance.  The refined systems of Li et al. 
(2008) and Luo and Wood (2007) were able to predict average monthly drought conditions up 
to three (3) months ahead. 
 
A number of consecutive time intervals where the selected flow variable (a discharge or flow 
volume) has lower values than a reference flow level indicates the duration of a drought event. 
 

• For each such event, the sum of deviations of a flow variable from the reference level 
represents the cumulative flow-deficit amount (drought severity). 

• This deficit divided by the duration is the measure of drought intensity. 

Streamflow droughts are generally characterized by the indices duration (time between onset 
and offset), severity (cumulative water deficit) and magnitude (severity/duration) (Tallaksen et 
al., 1997; Yoo et al., 2011).  
 
There are various drought indices applicable to define streamflow drought and the commonly 
used are:  
 
• Standardised Runoff Index (SRI) (Shukla and Wood, 2007) 
• Indices based on low flows 
• Indices based on runoff anomaly. 

 
Defining hydrological droughts solely by considering these indices requires the assignment of 
thresholds. Whenever the predicted or observed runoff falls below a threshold, this counts as 
an event of streamflow drought. Figure 5.1 illustrates the streamflow drought indices drawn 
from an observed or forecast hydrograph, with indices being dependent on choice of threshold.  
The solid line is the observed or forecast runoff that is in certain periods, above or below 
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streamflow detection threshold (dashed line). For a forecast member of each 32-day forecast 
and the corresponding observation, the longest consecutive period below the threshold 
(streamflow drought duration) is evaluated. The deficit during this period (severity, shaded 
area) is the cumulative difference between threshold and runoff.  The quotient of severity and 
duration, called magnitude, is evaluated as well. Timing is defined as the moment when half 
of the event has happened.   
 

 

Figure 5.1: Illustration of the streamflow drought indices (Fundel et al., 2013) 

 
The time of drought occurrence has been given different definitions, for instance the starting 
date of the drought, the mean of the onset and the termination date, or the date of the minimum 
flow. Often another drought deficit characteristic, the drought intensity, is introduced as the 
ratio between drought deficit volume and drought duration. Based on the time series of drought 
deficit characteristics it is possible to derive drought deficit indices (Tallaksen and Van Lannen, 
2004).  
 
The threshold might be chosen in many different ways, amongst other things, a function of the 
type of water deficit to be used. In some applications the threshold is a well-defined flow 
quantity. It is also possible to apply low flow indices, e.g. percentile from the flow duration 
curve See Table 5.1. The threshold might be fixed or vary over the year. 
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Table 5.1 Crocodile River at Karino – river flow thresholds for drought monitoring 

X2H006_Crocodile River at Karino 

Percentile Thresholds Oct Nov Dec Jan Feb Mar Apr May June July Aug Sept 

0.05 
Very Low 
Flow 4.6 4.6 4.6 5.8 6.7 7.7 4.6 4.6 4.6 4.6 4.6 4.6 

0.10 Low Flow 4.8 4.8 4.8 7.4 9.6 8.3 4.8 4.8 4.8 4.8 4.8 4.8 

0.25 

Below 
Normal 
Flow 6.6 7.2 10.1 13.9 12.0 15.2 8.7 6.6 6.6 6.6 6.6 6.6 

0.50 
Normal 
Flow 7.7 10.2 15.8 18.2 25.5 24.9 15.9 10.9 7.4 7.4 7.4 7.4 

0.75 

Above 
Normal 
Flow 9.7 13.3 22.2 31.7 43.7 33.2 21.8 14.6 9.5 8.3 8.3 8.3 

0.95 High Flow 12.5 31.3 65.2 43.0 86.8 83.9 48.7 24.3 13.3 10.4 9.0 9.9 

Max 
Extreme 
High Flow 16.1 44.8 77.3 71.3 109.8 103.0 94.8 47.0 29.4 19.1 12.8 10.8 

 
Runoff Anomaly 
The annual runoff variation is used as drought indicator based on anomaly percent. The 
categories of runoff are separated into 5 according to their percentage anomalies in Table 5.2 
which are denoted by digits-2, -1, 0, +1 and +2, where digit 2 refers to the anomaly percent 
Δ<-30% for a low-runoff year, digit -1 refers to_-30% ≤ Δ≤ -10% for a relatively lower-runoff 
year; digit 0 represents -10% ≤ Δ< 10% for a year of normal runoff; digit +1denotes 10%≤Δ< 
30% for a relatively higher-runoff year; digit+2 refers to Δ> 30% for a high-runoff year. 
 

Table 5.2: Runoff Anomaly categories based on their anomaly percent 

Runoff 
anomaly  

Corresponding 
Category 

Runoff status 

Δ<-30% -2 Very Low 
-30% ≤Δ≤-10% -1 Low 
-10%  ≤Δ< 10% 0 Normal 
10%≤Δ< 30% +1 High  
Δ> 30% +2 Very high 

 
From the runoff anomaly assessment of Wang et al. (2008) it was noted that there are common 
features of high and low runoff for different rivers and hence set of standards are developed 
to classify runoff levels (water deficiency or abundance) in rivers to indicate associated drought 
or flood categories. To achieve this, runoff data should be fit in to follow a normal distribution 
or other type of distribution. Normalizing runoff would convert the probability density function 
of Pearson type III distribution into the standard normal distribution as function of Z. According 
to the properties of a normal distribution of variable Z, the Z values are divided into 5 levels 
and delimit their corresponding bounded domains as the drought index of each category, given 
in Table 5.3. 
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Table 5.3: Z-Index denoted drought 

Category AF Z value D/F TFD 
1 >95% Z > 1.6448 Flood 5% 
2 70 to 95% 0.5244 < Z ≤1.6448 Light flood 25% 
3 30 to 70% -0.5244 ≤ Z ≤ 0.5244 Normal 40% 
4 5 to 30% -1.6448 ≤ Z < -0.5244 Light drought 25% 
5 < 5% Z < 1.6448 Drought 5% 

AF = accumulation frequency, D/F = drought or flood, and TFD = theoretical frequency distribution. 
 

5.2.3 Application of the Standardised Runoff Index (SRI) 

Drought, being complex in nature, is difficult to define, quantify and monitor. Streamflow data 
is generally used for the analysis of hydrological drought (Shukla and Wood, 2008) based on 
a Streamflow Drought Index (SDI). 
 
This index,SRIi,k,requires streamflow volume values Qi,j where i denotes the hydrological year 
and j-th month within a hydrological year. The cumulative streamflow volume, Vi,k, for the i-th 
hydrological year and k-th reference period can be obtained from: 
 
V i,k =∑j

kQt,ji=1,2….,          j=1,2….,                k=1,2,3,4  
 
SRIi,k  =  (Vi,k- Vmeank)/Sk 
 
Where Vmeanmk and Sk are respectively the mean and standard deviation of the cumulative 
streamflow volumes for the k-th reference period. 
 
The definitions of states of drought with SRI are: 
Non drought:  SRI≥ 0.0 
Mild drought:  ‐1.0 ≤ SRI < 0.0 
Moderate drought:  ‐1.5 ≤ SRI <‐1.0 
Severe drought:  ‐2.0 ≤ SRI <‐1.5 
Extreme drought: SRI <‐2.0 
 
As an illustration, two streamflow stations were selected for calculating and testing the 
performance of the SRI, one from the Crocodile River at Karino, in the Inkomati-Usuthu Water 
Management Area and another from the Berg River at Misverstand in the Western Cape. The 
analysis results shown in Figure 5.2 has shown that the SRI can well discover the main 
droughts known to have occurred in the Crocodile River sub-catchment: 1982-1984, 1992-
1996, and 2015-2016. This sub-catchment is characterized by large spatial variability in the 
river regimes and flow magnitudes (long dry winter months and short wet months). Similarly, 
Figure 5.3 indicates similar pattern of droughts, with extreme drought experienced in 2015-
2016. From the results below the SRI method can easily be used in an early drought warning 
system, but good quality streamflow data is required. 
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Figure 5.2: SDI Analysis at Crocodile River at Karino River flow station 

 
Figure 5.3: SDI Analysis at the Berg River at Misverstand River flow station 

 

5.3 Long term predictability 

5.3.1 Literature review 

There is a dearth of literature on long-term predictability. Recent papers on this topic refer to 
3 to 6 months as ‘long-term’ and use methods incorporated into the models presented in 
Section 2, that is, predictions linked to weather phenomenon such as ENSO. ‘Long-term’ 
within the context of this project implies greater than six months (the limit of GCM rainfall 
prediction) and up to the ten years, as required for long term water resources planning. Long-
term predictability would rely on identifying and quantifying cycles in streamflow or rainfall. 
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5.4 Storage prediction 

Storage prediction or forecasting has played a major role in the management of South Africa’s 
large dams since the 1980s This was brought about through the development of a stochastic 
model by Pegram (DWAF, 2006) which was initially used to manage the Vaal System and 
later applied to all large bulk water supply systems within South Africa. The method uses an 
Autoregressive Moving Average model (ARMA) to generate statistically plausible natural flow 
time series, typically up to 200 time series for so-call long term simulation and 500 to l 000 
time series for short term simulations. A typical outcome from such a process is shown in 
Figure 5.4. It is important to note, however, that this process does not predict or forecast the 
future flows but rather indicates the probability of future storage given a widest range of 
possible future flow events (from extreme drought to very wet periods). This has however 
proven to be a very useful tool to timeously introduce water restrictions to avoid system failure. 
 
The ARMA model described above assumes that all generated time series are stationery. 
Hence this method is not applicable to climate change where there is likely to be a trend of 
decreasing or increasing streamflow. Also, the ARMA does not take into account antecedent 
conditions but assumes any event is possible. Mallory et al. (2009) used a method described 
by Sellick and Bonthuys (Sellick, 2008) to incorporate antecedent condition into stochastic 
streamflow modelling. This concept was applied to Crocodile and Sabie River systems 
(DWAF, 2009; DWAF 2013). The latter model referred to as the Cai Squared model is a short-
term predictive model that works well over the period of April to November is the 
aforementioned catchments. 
 

 

Figure 5.4 : Storage projections using an ARMA stochastic model 

  



 

53 
 

6 SOIL MOISTURE AND GROUNDWATER PREDICTABILITY 

6.1 Introduction 

Different groundwater systems (in terms of aquifer type as well as the local environment) 
perform differently with respect to drought. According to Peters et al. (2005), this performance 
is identified by three indicators: reliability, resilience and vulnerability. Reliability is the 
frequency or probability that a system is in a satisfactory state. Resilience describes how 
quickly a system is likely to recover once a failure has occurred. The magnitude of failure was 
assumed to be the drought deficit as defined using the threshold level approach outlined in 
Peters et al. (2005). Thresholds would need to be defined if this approach is taken forward. 
Vulnerability is the severity of a failure. Different authors define vulnerability differently, it has 
been defined as both the average drought deficit (Kjeldsen and Rosbjerg, 2001), and as the 
maximum drought (Moy et al., 1986). These indicators also do not reflect the dependency 
between the occurrence, frequency and severity of droughts. Mishra and Singh (2010) point 
out that due to the shortcomings in the conventional concept of a groundwater drought, 
increasingly groundwater drought is identified on the basis of the temporal variability of the 
weather. 
 
Performance indicators have mostly been applied to streamflow or surface water reservoirs. 
The few studies that investigate the performance of groundwater or baseflow, use predefined 
indicators to compare the sensitivity or susceptibility to drought of different catchments. These 
studies often use very different indicators. Currently there is no consensus about how to 
evaluate or define the performance of groundwater during drought (Peters et al., 2005). 
 
The difficulty in defining drought characteristics has led to compartmentalised and quite 
specific drought indices, such as the Palmer Drought Stress Index (PDSI, for hydrological 
drought), the Standardised Precipitation Index (SPI, for meteorological drought), and the 
Standardised Groundwater level Index (SGI, for groundwater drought). Recently attempts 
have been made to integrate drought indices (Ma et al., 2014). Thomas et al. (2014) developed 
a framework to evaluate a holistic drought characterisation using data from the GRACE 
satellites, focusing on the total water storage deficits to characterise drought occurrence. 
 
The development of groundwater drought indicators has employed water budget approaches 
(Mendicino et al., 2008), statistical applications using in situ groundwater observations 
(Bloomfield and Marchant, 2013) or hydrological model simulations (Houberg et al., 2012; Li 
and Rodell, 2015). Thomas et al. (2017) used a water budget approach to derive a 
groundwater drought index, and integrated anthropogenic impacts and natural groundwater 
drought. Both Li and Rodell (2015) and Thomas et al. (2017) compared GRACE derived 
groundwater storage changes with in-situ observation of changes using a groundwater 
drought index (originally introduced in Li and Rodell, 2015). Thomas et al. (2017) compared 
their GRACE derived Groundwater Drought Index (GDI) with in-situ based Groundwater 
Indices (GWI) and their results documented a strong correlation. In addition, they compared 
the GDI with various other drought indices such as the PDSI and the SPI and identified a 
temporal offset of 5 months, suggesting that traditional drought indicators demonstrated 
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drought conditions 5 months prior to evidence of groundwater drought (for their case study 
area which was in the Central Valley of California). 
 
Peters et al. (2005) list the overall performance indicators they utilised which are based on the 
three single performance indicators originally defined by Hashimoto et al. (1982) for a surface 
water reservoir, and mentioned above (reliability, resilience and vulnerability). Reliability α is 
the frequency or probability that a system is in a satisfactory state. It is calculated as the period 
of time when the recharge or groundwater discharge is above the threshold level divided by 
the total duration. Resilience ϓ describes how quickly a system is likely to recover to a 
satisfactory state once a failure has occurred. It is calculated as the inverse of the expected 
drought duration. Vulnerability ν is the likely magnitude of a failure if one occurs. The 
magnitude of failure was assumed to be the drought deficit as defined using the threshold 
level approach. Vulnerability is both calculated as the average deficit per drought and as the 
maximum deficit. Using outputs (groundwater recharge, gradient and discharge) from the 
modified Pitman Model together with defined thresholds, Peters et al. (2005) indicators could 
be applied. An overview of the performance indicators used by Peters et al. (2005) is given 
below: 
 
• α Reliability: the probability that the system is not in a drought, 
• ϓ Resilience: the inverse of the expected duration of a drought, 
• ν Vulnerability: expected severity of a drought if one occurs, expressed both by the 

average drought deficit and the deficit of a drought with a 50-year return period, 
• SL Sustainability index (defined by Loucks, 1997), which combines α, ϓ and ν, 
• Pd.yr Overall performance indicator defined in Peters et al. (2005) based on the 

average drought deficit per year, 
• PD.10  Overall performance indicator defined in Peters et al. (2005) based on the 

drought deficit for droughts with return periods larger than 10 years, 
• PD.Cor Overall performance indicator defined in Peters et al. (2005) based on the loss 

function defined by Correia et al. (1986). 
 

The time series of groundwater recharge and discharge generated by a model needs to be 
sufficiently long to estimate return periods of at least 50 years for estimating the performance 
indicators. The model will be run with climate data from WR2012 (Bailey and Pitman, 2017) 
(in addition to forecasted climate data) and therefore a record length of at least 90 years will 
ensure climatic extremes are included in the simulation. A monthly time step is an appropriate 
time step for the analysis of groundwater droughts as this time step avoids large numbers of 
minor droughts and decreases dependence among droughts but still shows sufficient detail. 
 

6.2 GRACE Mission Data 

Remote sensing has been established as a powerful tool to observe water storage dynamics 
at large scales (Thomas et al. 2017a) with the launch of the GRACE satellites. Observations 
from GRACE gravity anomalies may be converted into changes of water equivalent height 
thus tracking changes in total water storage around the world. Should other components of 
the water balance be available (e.g. surface water and soil moisture information), GRACE has 
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been able to isolate groundwater storage changes (Rodell et al., 2009; Scanlon et al., 2015) 
at a regional scale. Many studies have evaluated GRACE-derived groundwater storage 
changes as a response to drought (Famiglietti et al., 2011; Scanlon et al., 2012), while Thomas 
et al. (2017b) evaluated a GDI based on GRACE observations in an effort to understand and 
identify groundwater drought. 
 
GRACE-based storage changes are in good agreement with those obtained from land surface 
model simulations (Syed et al., 2008) and in situ observations (Rodell et al., 2007), and the 
utility of GRACE for characterising extreme drought has been demonstrated in a number of 
recent studies (Houberg et al., 2012; Schumacher et al., 2018). Thus, the potential to use 
GRACE observations to fill the current need for subsurface water information in the drought 
mapping and prediction process is evident. While GRACE has supported many advances in 
water cycle science, the monthly production frequency and coarse spatial resolution (about 
150 000 km2) limit the utility of GRACE observations for a majority of applications that require 
near real time input of much finer resolution earth observation data. In order to realise the full 
potential of GRACE for hydrological applications at the basin scale, column integrated Total 
Water Storage (TWS) anomalies from GRACE must be effectively downscaled in space, 
vertically stratified into moisture component anomalies (e.g. soil moisture, groundwater and 
surface water), and extrapolated to the present, thereby meeting the specificity, timeliness, 
and high spatial resolution requirements of most applications. 
 
Examples of data assimilation, which has synthesized the advantages of observations and 
numerical land surface models have been used to disaggregate GRACE observations 
temporally, horizontally and vertically. Zaitchik et al. (2008) assimilated GRACE TWS 
anomalies into a catchment Land Surface Model using a novel implementation with an 
Ensemble Kalman Smoother. This GRACE Data Assimilation Scheme (DAS) was shown to 
improve model skill in the simulation of hydrological states and fluxes in sub-GRACE 
resolution in the Mississippi basin. Data assimilation essentially reduced uncertainties in the 
Land Surface Model simulation resulting from the input data used to force the model, 
simplifications in model parameterisation and limitations in the described physical realism of 
the model, by using observation data sets for constraining the model simulations of terrestrial 
hydrology. Houberg et al. (2012) furthered this work and extended GRACE DAS (Zaitchik et 
al., 2008) to the North American domain as part of a larger project aimed toward integrating 
enhanced (i.e. via data assimilation) GRACE TWS data into the U.S. and North American 
Drought Monitors. Beside the wider range of hydroclimatic conditions, the study went beyond 
Zaitchik et al. (2008) by assessing the potential of GRACE DAS for drought monitoring and by 
evaluating GRACE DAS simulations using soil moisture measurements, and groundwater 
observations beyond the Mississippi Basin. They determined that drought conditions could be 
identified more comprehensively and objectively by integrating GRACE based drought 
indicators into the short and long term objective blends (a mix of precipitation data, various 
standardized indices such as the PDSI and simple water budget estimates of soil moisture) 
that constitute the U.S. and North American Drought Monitor baselines. These Drought 
Monitor baselines currently lack valuable information on deep (root zone and below) soil 
moisture and groundwater storage changes (Figure 6.1). 
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Figure 6.1: Grace model results from Houberg et al. (2012) 

 
Figure 6.1 shows the correspondence between (a) the GRACE monthly water storage 
anomaly fields, (b) the U.S.Drought Monitor product, and (c) drought indicators based on 
model-assimilated GRACE TWS observations during the drought in the south eastern United 
States in August 2007 
 
Schumacher et al. (2018) integrated GRACE mission into WaterGAP Global Hydrology Model 
which is a global water resources and use model for the semi-arid region of the Murray Darling 
Basin, Australia. In particular, they tested the ability of a parameter calibration and data 
assimilation approach to introduce long term trends into the Model, which were poorly 
represented due to errors in forcing, model structure and calibration. They also investigated 
the influence of selecting a specific GRACE data product and filtering method on the final 
parameter calibration and data assimilation results. They found that integrating the GRACE 
data into the Model did not only improve simulation of seasonality and trend of terrestrial water 
storage changes, but it also improved the simulation of individual water storage components. 
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They also importantly found that using solutions from different GRACE data providers 
produced slightly different outcomes and recommended that a rigorous evaluation of GRACE 
errors is required to realistically account for the spread of the differences in the results. 
 
Clearly, there are numerous examples of authors applying GRACE mission data products in 
interesting and creative ways and with many different types of models. Many of these 
examples (Schumacher et al., 2018; Houberg et al., 2012; Li et al., 2012; Zaitchik et al., 2008; 
Thomas et al., 2017) are applied specifically for drought prediction and evaluation purposes. 
It is clear however, that a rigorous evaluation of GRACE errors is required, and that the 
assimilation of GRACE data into models is thoughtfully and carefully carried out. 
 

6.3 Groundwater modelling 

While the GRACE method could be used to give a broad catchment-based perspective of the 
state of groundwater, the data is not available at the resolution required to report at quaternary 
catchment scale. An alternative is to model the change in groundwater. There are two 
approaches readily available to do this, namely the Sami Groundwater Model, as described in 
the WRSM2000 Technical Guide (Bailey et al, 2007), and the Hughes Groundwater Model 
(Hughes et al, 2007). These two models are similar and the general principles are described 
below with the aid of Figure 6.2. 
 

 
Figure 6.2: Principles of groundwater flow 
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Surface runoff, soil moisture and interflow are calculated by the Pitman model. The 
groundwater components which need to be estimated are: 
 
• Recharge 
• Flow to downstream catchments, and 
• Groundwater discharge into the river 
• Evaporation from the riparian zone 

 
The above groundwater components can all be estimated from the soil moisture component 
‘S’ which is an output of the Pitman model. 
 

6.3.1 Groundwater recharge 

Recharge is given by the following equation (Hughes 2007): 
 

 
Equation 6.1 

6.3.2 Flow to downstream catchments 

While most groundwater discharges into the streams within the catchment from which the 
recharge occurs, some of the groundwater flows sub-subsurface to the downstream 
catchment, also referred to as underflow. 
 
This outflow can be estimated as the product of Transmissivity (T) and Hydraulic Gradient 
(HG) as given by Equation 6.2. 
 
 
 
 
 
 
 

Equation 6.2 
 

Underflow = HG x T 
 
Where: 
T = Transmissivity 
HG = Hydraulic gradient 
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The Hydraulic Gradient is not a constant but varies with storage as given by Equation 6.3 from 
the WRSM2000 Technical Guide (Bailey et al, 2007). 
 
 
 
 
 
 
 
 
 

Equation 6.3 

6.3.3 Evaporation from the riparian zone 

While the Pitman model already caters for evaporation from soil moisture, there is an 
additional component to evaporation which relates to groundwater, and this is 
evapotranspiration from the riparian zone. Riparian vegetation transpires groundwater which 
enters the soil zone as it approaches the riparian zone. This is calculated simply as the area 
of the riparian zone multiplied by the net evaporation rate. However, the wetted area within 
the riparian zone is not constant and varies as a function of groundwater storage. The full 
equation from the WRSM2000 Technical Guide (Bailey et al, 2007) is as follows: 
 
 
 
 
 
 
 

Equation 6.4 
 
Note that there are numerous methods for estimating evapotranspiration. These are not 
discussed in this report. 

6.3.4 Discharge into streams (baseflow) 

The flow out of groundwater into the stream or river, also referred to as baseflow, is estimated 
with equation 6.5. 
 
 
 
 
 
 

Equation 6.5 
Equation 6.5 
Equation 6.5 

GWEVAP = (EVAPOTRANSPIRATION – RAINFALL) x AREA X (STORE – SWL)/(CAP – SWL) 
 
Where: 
GWEVAP = Evaporation from groundwater recharge as it flows through the riparian zone 
AREA = The estimated area of the riparian zone from which groundwater evaporation is occurring 

HG = HGRAD x (STORE – SWL)/(CAP – SWL) 
 
Where: 
HG = Hydraulic gradient at any point in time 
HGRAD = maximum hydraulic gradient 
STORE = Groundwater storage 
SWL = Static water level 

       
 

GWBaseflow = (1 – e(HEAD X BPOW)) X BFMAX 
 
Where: 
GWBaseflow = Contribution of groundwater to surface water (stream, river or lake) 
HEAD= Hydraulic head 
BPOW = Power function which defines the relationship between hydraulic head and 
baseflow 
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 Hydraulic head is not a constant but varies over time, as given by Equation 6.6. 
 
 
 
 
 
 
 
 
 
 

Equation 6.6: 
 
 
Using equations 6.1 to 6.6 with a soil moisture time series (from the Pitman model) as input, 
the groundwater storage can be simulated. See Figures 6.3 and 6.4 which show simulated 
soil moisture and groundwater storage in the X21C catchment. 
 
 

 
Figure 6.3: Simulated soil moisture derived from the Pitman model 

 

HEAD = STORE – SWL – (RUNOFF/CATCHMENT AREA) 
 
Where: 
HEAD = Hydraulic head at any point in time 
RUNOFF = Streamflow at any point in time 
CATCHMETN AREA = Catchment are from which the streamflow is derived 
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Figure 6.4: Simulated groundwater storage 

 

6.4 Conclusions and recommendations 

Monitoring groundwater storage is challenging, and while remote sensing techniques are 
constantly improving, these techniques do not provide observations at a fine enough resolution 
to be useful for managing catchments at quaternary scale. As an interim measure, it is 
recommended that modelled soil moisture and groundwater storage be used as drought 
indicators for these parameters. 
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7 INTEGRATION OF PREDICTION METHOLOGIES TOWARDS 
AN INTEGRATED DROUGHT MONITORING AND 
PREDICTION SYSTEM 

7.1 General approach 
Based on the analyses carried out in this project and described in section 4, the integrated 
drought warning system has been conceptualised as a combination of a number of sources of 
information: 
 
• Near real time climate (rainfall and air temperature) data 
• Indices of modes of climate variability (e.g. ENSO) 
• Multi-model ensemble seasonal forecast data 
• Near real time soil moisture monitoring data 

 
 
In the above, the current climate variables obtained from the monitoring system are used 
within the drought warning system in three contexts: 
 
• To evaluate the current status of drought (through drought indices) 
• To derive implications of current rainfall anomaly to the end of season rainfall total using 

statistical model, 
• To provide the input (initial condition) to hydrological modelling aimed at generating 

hydrological seasonal forecast. 
 
Indices of modes of climate variability (and their forecast) provide information on drivers of 
climate variability that affect climate at seasonal time scale and underlie the predictability of 
climate at this time scale. Within the drought warning system, this information is used to 
construct messages about the future drought outlook through incorporating it as an explicit 
input to a statistical model.  
 
The multi-model ensemble seasonal forecast data comprise the source of information about 
climate conditions at the seasonal time scale (3 months) that is, theoretically at least, the most 
conceptually defensible. This is because climate models allow for a physically consistent 
representation of the climate system, and thus for the most comprehensive linking of the 
current and future conditions, i.e. linking that makes fewer assumptions than any other type of 
statistical forecast. That forecast is, however, not devoid of uncertainties. 
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Figure 7.1: Schematic of the integrated drought warning system 

 
The three sources of information (current climate, current state of modes of climate variability, 
results of dynamical seasonal climate forecast) allow for (direct or indirect) capturing three 
principal factors that affect the outlook of the drought: 
 
• Current state of drought (or simply season’s anomaly), that is one of the main factors 

affecting future drought,  
• Main drivers of predictability of climate – i.e. processes that affect climate and vary slowly 

enough to exert their influence at the seasonal time scale 
• Combination of the knowledge about physical processes in the climate system and 

knowledge about the initial conditions of the climate system that is implicitly formalized 
in the form of initialized global forecast models.  

 
In addition, through the incorporation of hydrological modelling that allows for translation of 
the seasonal climate forecast into seasonal hydrological forecast, the warning system allows 
for incorporation of information on  the state of hydrological system, and capturing the 
influence of slow-varying processes within the earth surface (and sub-surface) on future status 
of various parts of water resource and hydrological systems – runoff, soil moisture, reservoir 
storage and groundwater storage. 
 
The information sources listed above contribute to four “pathways” of generating messages 
relevant from the perspective of drought warning that encapsulate the different sources of 
drought forecast information: 
 
• Information about the current drought,  
• Information from statistical models based on assumption that the current drought affects 

future drought status,  
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• Information on the future climate anomalies based on climate models that 
comprehensively describe climate processes, and 

• Information about the future state of elements of the hydrological/water resources 
system that merge information about future climate from climate models with that 
describing their current state.  

  
The combination of these pathways amounts to a multi-method, multi-data sources approach 
that allows for derivation of robust messages in a situation of uncertainty of information 
sources and (cascading and accumulating) uncertainties and errors associated with each data 
processing path.  
 
The system has two components – online (a website) and offline (software installed and 
operated on a PC). The online component focuses on analyses of climate data and derivation 
of information in the pathways a, b and c. The offline component focuses on derivation of 
hydrological information in the pathway (d).  
 
While this way of approaching the functionality of the integrated system is recognised as not 
the most convenient, and makes the system available to only highly skilled users, there are 
three main motivations behind the adopted approach: 
 
• The process of implementation of Pitman hydrological model in an online environment 

by far exceeded the scope of this project.  
• The system is focused on water resources, and thus its primary audience is water 

resource managers who, with the access to Pitman model are able to interrogate its 
outputs in a more specific rather than generic way, the latter of which would obviously 
be implemented if Pitman model was to be run online with a generic configuration. 

• The online component allows for interrogation of a very comprehensive range of 
seasonal climate forecasts, and selection of the forecast ensemble that is best suited to 
answer drought warning questions in a particular location. Only that forecast can then 
be used to generate hydrological forecast, again, providing targeted rather than generic 
information, with benefits to the final outcomes. 

 
It is envisaged that the warning system is operated monthly and provides information about 
the period of three months ahead (including the current given month). Drought warning can 
be issued approximately in the middle of the month. 
 
The details of the implementation of the four information “pathways” within the envisaged 
drought warning system are presented in the sections below. 
 

7.2 Implementation and functionality of the four information pathways 

7.2.1 Current drought status 

Access to raw, original climate data sources is limited. Station data originating from SAWS or 
ARC are available for a fee, and thus cannot be utilized at this stage within this project. The 
current drought status is thus assessed based on readily available surrogate data sources – 
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gridded station data (GPCC) and satellite-based rainfall data (CHIRPS). As far as can be 
ascertained, there are no gridded air temperature data of sufficient resolution available in near 
real time, the analyses of rainfall has been limited to indices only. Two drought indices were 
used; a simple accumulated seasonal rainfall anomaly, and an SPI at three time scales – 12 
months, 24 months and 36 months. These time scales are used because they are the most 
relevant from the perspective of water resources. 
 
Information is presented at the level of quaternary catchments – with maps providing a 
regional overview, and time series available for each of the quaternary catchments, when 
selected. 
 
Apart from the data-based product, links to drought information products of other institutions 
– notably the ARC Umlindi newsletter are provided (e.g. 
https://www.arc.agric.za/ARC%20Newsletters/UMLINDI,%20Issue%202020-
11,%20November%202020.pdf), SAWS Drought Monitoring Desk 
(https://www.weathersa.co.za/Documents/Climate/CLS-CI-Drought%20Monitoring.pdf) 
  

7.2.2  Statistical forecast of the end of the season rainfall anomaly 

This pathway is based on the same datasets as the current drought status pathway and 
presents the implementation of the statistical model described in detail in section 4.4.  
Information is presented at the level of quaternary catchments – with maps providing a 
regional overview, and time series available for each of the quaternary catchments, when 
selected. 
 

7.2.3 . Numerical rainfall forecast 

This “pathway” relies on a rainfall forecast from a multi-model ensemble of global climate 
models. 
 
A combination of two publicly available multi-model ensembles were used, namely, NMME 
and Copernicus@ECMWF. Those are described in detail in section 4.3.2. 
 
This pathway is geared towards deriving forecast of three relevant indices: deterministic 
(ensemble median) rainfall anomaly, and probabilities of 1 in 3, 1 in 5 and 1 in 10 years rainfall 
anomaly in terms of 3-months rainfall mean, for each of the quaternary catchments (which are 
the basic units of water management in South Africa). 
 
Three ways of interpreting the multi-model ensemble towards the future drought messages 
from the ensemble data are envisaged: 
 
• Analysing all the individual models together as a “grand ensemble”. In that, the models 

forecast data are combined together into a single ensemble of 120-150 members, and 
forecast indices are calculated. 

• Analysing an individual model that has the best skill for an area and period of concern.  

https://www.arc.agric.za/ARC%20Newsletters/UMLINDI,%20Issue%202020-11,%20November%202020.pdf
https://www.arc.agric.za/ARC%20Newsletters/UMLINDI,%20Issue%202020-11,%20November%202020.pdf
https://www.weathersa.co.za/Documents/Climate/CLS-CI-Drought%20Monitoring.pdf
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• Analysing the level of agreement of models in the multi-model ensemble in terms of 
increased probability of drought as manifested by the drought indices. 

 
In the operational setting, every month, once the forecast data are available:  the following 
happens automatically in the back-end of the system, by execution of a number of scripts: 
 
• Recent GPCC Monitoring and First Guess data are downloaded.  
• GPCC 2018 data are merged with GPCC Monitoring data and GPCC First Guess data 

to generate time series of historical “observed” rainfall extending until the one month 
prior to the month of the forecast. 

• Gridded GPCC rainfall data are converted to rainfall over the WR2012 catchments and 
rainfall regions.  

• Forecast data for all models is downloaded for the forecast issued on the given month. 
• Forecast data are converted to rainfall over the WR2012 catchments and rainfall regions 
• The regions’ rainfall figures are then bias-corrected. 
• Rainfall indices (ensemble median, probabilities of below normal, 1 in 5 and 1 in 10 

years) are calculated on the forecast data. 
• Continuous time series are generated that combine the historical monitoring data 

(merged GPCC time series) and the forecast data. These are later used to force the 
hydrological model. 

 
Information is presented at the level of quaternary catchments – with maps providing a 
regional overview, and details of the forecast available for each of the quaternary catchments, 
when selected. 
 
Maps present drought-oriented deterministic and probabilistic forecast indices (ensemble 
median rainfall amount, probability of below normal, probability of 1 in 5 year and probability 
of 1 in 10 year drought, as well as a set of skill measures for each index. 
 
For each quaternary, upon selecting, detailed information on skill, including tabular and 
graphical information such as ROC curve, as well as time series allowing evaluation of the 
performance of given forecast historically are presented. 
 

7.2.4 Hydrological model implementation and structure 

• Rainfall prediction (3 months into the future) obtained from members of the “grand” multi-
model ensemble of numerical seasonal forecasts and converted into % rainfall format 
consistent with the Pitman Model format. Other output includes: 

o Rainfall prediction map for the whole country at quaternary scale. 
o Precipitation Indexes. 

• Pitman model upgraded on the WReMP platform to accept multiple rainfall scenarios. 
The current configuration reads 10 ensembles from SANS5. The Pitman Model 
produces: 

o Natural runoff ensemble consisting of 10 time series. 
o Time series of soil moisture. 
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o Time series of Groundwater storage. 
• The runoff time series are then run through a WReMP (or WRYM) to produce: 

o Ensemble of streamflow.  
o Storage Ensemble in all dams. 
o Soil moisture prediction. 
o Groundwater storage prediction. 

 
7.2.4.1 . Integration of hydrological model with numerical rainfall forecast  
 

 
Figure 7.2: Schematic of operational implementation of a hydrological forecasting 

system  

Figure 7.2 is based on continuous simulations with observed data and appended rainfall 
forecast data. 

 

A Windows based application was developed to achieve the above drought monitoring and 
forecasting integration. See Figure 7.3.  
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Figure 7.3: Integrated Drought Monitoring and Prediction System (IDMAPS) 

The IDMAPS application links to the CSAG rainfall website 
(https://web.csag.uct.ac.za/wrc_earlywarning/) to rainfall forecasts. Streamflow, Groundwater 
and Soil moisture components are modelled using the recoded Pitman Model while storage is 
modelled using the Water Resources Modelling Platform. For each forecasting component, a 
monthly time step time series is produced from which drought indices are calculated. 
 
The application also provided links to other useful forecasting websites. 
  

https://web.csag.uct.ac.za/wrc_earlywarning/
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8 PILOT STUDIES 

8.1 Introduction 

In order to test the integrates system, three catchments were selected to conduct pilot studies. 
The catchments were selected mainly to provide variation on climatic zones. Hence catchment 
in the winter and summer rainfall regions were selected. In addition, a catchment on the 
southern coast which experience both summer and winter rainfall was selected. Another 
criteria in selecting catchments was simplicity so as not to cloud the projections with unrelated 
operational issues. 
 
The catchments selected were as follows: 
 
• Theewaterskloof (Western Cape) 
• White River system (Mpumalanga) 
• Garden Route Dam (Southern Cape) 

 

8.1.1 Theewaterskloof 

The upper reaches of the Theewaterskloof, up to and including the Theewaterskloof Dam, is 
shown in Figure 8.1. The catchment comprises of quaternary catchments H60A, H60B and 
H60C. 
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Figure 8.1: Location of the Theewaterskloof system 

 
This system includes the Elandskloof Dam which supplies water to irrigators downstream of 
the dam and supplements the water supply to the town of Villiersdorp. The Theewaterskloof 
supplies water to Cape Town and well as irrigators downstream of the dam. 
 
The hydrology of the system is summarised in Table 8.1 while estimated water use is 
summarized on Table 8.2. 

Table 8.1: Summary of climate and hydrology information for the upper 
Theewaterskloof catchment 

Catchment Area  
(km2) 

Mean Annual 
Evaporation 

(mm) 

Mean Annual 
Precipitation 

(mm) 

Natural Mean 
Annual Runoff  

(million 
m3/annum) 

H60A 73 1 440 2 141 112.1 
H60B 210 1 465 1 241 79.9 
H60B 217 1 470 994 62.9 
Total 500   254.9 

Source: WR2012 
 
A time series of the natural flow into the dam is shown in Figure 8.2 while the monthly 
distribution of the natural flow is shown in Figure 8.3. 
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Figure 8.2: Natural flow time series into the Theewaterskloof Dam (based on WR2012 
hydrology) 

 

 

Figure 8.3: Monthly distribution of natural flow 

Table 8.2: Water use in the Theewaterskloof catchment 

User sector Estimated water use/streamflow 
reduction 

Irrigation 14.4 
Domestic 0.7 
Streamflow reduction 
due to commercial 
forestry 

 
0.3 

Transfers to Cape 
Town 

220* 

Release to  
downstream 

37.2 

* Varies 
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In addition to water use within the catchment, water is released from the dam to downstream 
users. This release, estimated at 37.2 million m3/annum was obtained from the flow record 
H6H012. Note that while the 1 in 50 yield of the Theewaterskloof Dam is approximately 220 
million m /annum, the actual transfers from the dam to the Cape town water supply system 
varies according to a complex operating rule which takes into account the storage of the other 
dams in the system and restriction applied to the systems as a whole. For the purpose of this 
forecasting exercise, the recorded abstractions from the dam were requested from DWS but 
these were not yet available as ‘verified data’. The abstraction was therefore estimated from 
the record of abstractions (Gauge G1H053). See Figure 8.4. 
 

 

Figure 8.4: Transfers from Theewaterskloof Dam to Cape Town 

 
The projected natural flows, commencing in January 2020, are shown in Figures 8.5, 8.6 and 
8.7. These natural flows were derived using the Pitman model and the projected rainfall. Note 
that the rainfall projections are only for three months hence the limitation in the projected 
natural flows. The minimum and maximum natural flows in each month, as obtained from 
WR2012, are also shown on this graph.
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Figure 8.5: Modelled natural flow using projected rainfall (January to April 3 month projections) 
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Figure 8.6: Modelled natural flow using projected rainfall (May to August 3 month projections) 
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Figure 8.7: Modelled natural flow using projected rainfall (September to December 3 month projections) 
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The projected storage of the Theewaterskloof Dam is shown in Figures 8.8, 8.9 and 8.10. Note that the starting storage of the dam is set to the 
observed storage with each simulation. 
 

 

Figure 8.8: Modelled storage using projected natural flow (January to April 3 month projections) 
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Figure 8.9: Modelled storage using projected natural flow (May to August 3 month projections) 
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Figure 8.10: Modelled storage using projected natural flow (September to December 3 month projections) 
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8.1.2 White River System 

The White River system is an important sub-catchment of the Crocodile catchment. It is a 
complex catchment containing four significant dams and transfers between two catchments, 
namely, the White River catchment and the sand River catchment. See Figure 8.11. The White 
River system, as modelled in this pilot study, includes quaternary catchments X22E, X22G 
and X22H. 
 

 

Figure 8.11: Location of the White River system 

 
Details of the dams within this system are given in Table 8.3. 
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Table 8.3: Dams in the White River System 

Dam Full supply 
surface Area (ha) 

Full supply 
capacity 

(million m3) 
Owner 

 
Operator 

Klipkopje 235 12.30 WRVCB WRVCB 

Longmere 90 4.24 WRVCB WRVCB 

Primkop 41 1.93 WRVCB WRVCB 

Witklip 190 1.90 DWS Sand River Irrigation Board 

 
 

Table 8.4: Summary of climate and hydrology information for the upper 
Theewaterskloof catchment 

Catchment Area  
(km2) 

Mean Annual 
Evaporation 

(mm) 

Mean Annual 
Precipitation 

(mm) 

Natural Mean 
Annual Runoff  

(million 
m3/annum) 

X22E1 16.0 1 447 1 313 6.9 
X22E2 48.3 1 453 1 192 16.5 
X22E3 88.6 1 464 1 065 19.7 
X22G1 77.0 1 458 1 116 13.6 
X22G2 30.5 1 456 1 053 6.1 
X22H1 66.2 1 453 1 006 11.8 
X22H2 90.2 1 450 910 13.8 
X22H3 43.8 1 472 806 5.1 
Total     

Source: IUCMA, 2019 
 
A time series of the natural flow into the Longmere Dam is shown in Figure 8.12 while the 
monthly distribution of the natural flow is shown in Figure 8.13. 
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Figure 8.12: Natural flow time series into the Longmere Dam (based on IUCMA 2019) 

 

 

Figure 8.13: Monthly distribution of natural flow 

 
The water use in the catchment is summarized in Table 8.5. 
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Table 8.5: Water use within the White River system 

Water use sector Water requirement 
(million m3/annum) 

Municipal 5.0 
Industrial 0.12 
Irrigation 26.6 
Streamflow reduction 15.1 

 

The projected natural flows, commencing in January 2020, are shown in Figures 8.14, 8.15 
and 8.16. These natural flows were derived using the Pitman model and the projected rainfall. 
Note that the rainfall projections are only for three months hence the limitation in the projected 
natural flows. The minimum and maximum natural flows in each month, as obtained from 
WR2012, are also shown on this graph. 
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Figure 8.14: Modelled natural flow using projected rainfall (January to April 3 month projections) 
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Figure 8.15: Modelled natural flow using projected rainfall (May to August 3 month projections) 
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Figure 8.16: Modelled natural flow using projected rainfall (September to December 3 month projections) 
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The projected combined storage of the Klipkopje and Longmere dams are shown in Figures 8.17, 8.18 and 8.19. Note that the starting storage 
of the dam is set to the observed storage with each simulation. 
 

 

Figure 8.17: Modelled storage using projected natural flow (January to April 3 month projections) 
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Figure 8.18: Modelled storage using projected natural flow (May to August 3 month projections) 
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Figure 8.19: Modelled storage using projected natural flow (September to December 3 month projections) 
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The projected rainfall within the Klipkopje and Longmere dam catchments are shown in Figures 8.20, 8.21 and 8.22.  
 

 

Figure 8.20: Rainfall prediction versus observed rainfall (January to April 3 month projections) 
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Figure 8.21: Rainfall prediction versus observed rainfall (May to August 3 month projections) 
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Figure 8.22: Rainfall prediction versus observed rainfall (September to December 3 month projections)
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8.1.3 Karatara River 

The Theewaterskloof and White River pilot studies made projections of storage in dams based 
on rainfall projections. In both cases the modelling procedure seems to underestimate the 
storage. Since there are many components to the integrates system it is no possible from the 
previous two pilot model setup to identify the source of the discrepancy. Therefore, a third pilot 
study was selected in a catchment without storage and a reliable flow gauge which is recording 
flow which is largely natural. The selected catchment is the Karatara River in the K40C 
quaternary catchment. See Figure 8.23. In this pilot model setup the project catchment runoff 
is compared with the observed runoff. 
 

 
Figure 8.23: Location of the Karatara River catchment 
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Table 8.6: Summary of climate and hydrology information for the K40C quaternary 
catchment 

Catchment Area  
(km2) 

Mean Annual 
Evaporation 

(mm) 

Mean Annual 
Precipitation 

(mm) 

Natural Mean 
Annual Runoff  

(million 
m3/annum) 

K40C 120.0 1 400 930 33.0 
Gauge K4H002  22.0 1 400 930 6.0 

Source: WR2012 with K2H002 MAR based on linear scaling 
 
A time series of the natural flow at K2H002 based on WR2012 and linear scaling is shown in 
Figure 8.24 while the monthly distribution of the natural flow is shown in Figure 8.25. 
 

 

Figure 8.24: Natural flow time series at Gauge K4H002, Katara River 

 

 

Figure 8.25: Monthly distribution of natural flow 

 
Note that the runoff from this catchment is bimodal with peaks in October and March. 
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The water use in the catchment is limited to forestry plantations with an estimate area of 3.73 
km2. The streamflow reduction due to this commercial forestry is estimated at 0.32 million 
m3/annum. See Figure 8.26. 
 

 

Figure 8.26: Land use in the Karatara catchment 

 
The projected natural flows, commencing in January 2019, are shown in Figures 8.27, 8.28 
and 8.29. The reason that the year 2019 was used is that the observed flow for 2020 is not 
yet available. These natural flows were derived using the Pitman model and the projected 
rainfall. Note that the rainfall projections are only for three months hence the limitation in the 
projected natural flows. The minimum and maximum natural flows in each month, as obtained 
from WR2012, are also shown on this graph. 
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Figure 8.27: Modelled natural flow using projected rainfall (January to April 3 month projections) 
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Figure 8.28: Modelled natural flow using projected rainfall (May to August 3 month projections) 
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Figure 8.29: Modelled natural flow using projected rainfall (September to December 3 month projections)
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8.1.4 Gutshwa River  

The Gutshwa River catchment, located in the Crocodile catchment on the south-eastern 
border of the Kruger National Park, is an unusual catchment in that the rainfall is relatively 
high ( 800mm/annum ) but the runoff very limited. This is due to the high rate if recharge into 
the alluvial aquifer. There are several monitoring boreholes in this catchment and hence it was 
selected as a case study for groundwater forecasting. 
 
Figure 8.30 shows the location of the Gutshwa catchment which consist of quaternary 
catchment X24A, B and C. 
 

 
Figure 8.30: Catchment of the Gutshwa River, Mpumalanga 

Table 8.7: Summary of climate and hydrology information of the Gutshwa River 

Catchment Area  
(km2) 

Mean Annual 
Evaporation 

(mm) 

Mean Annual 
Precipitation 

(mm) 

Natural Mean 
Annual Runoff  

(million 
m3/annum) 

X24A 248.5 1 480 720 11.0 
X24B 335.0 1 485 750 14.6 
X24C 285.7 1 480 760 13.2 
Total 869.2   38.8 

Source: IUCMA, 2019 

Nelspruit Kanyamazane 

White River 

KRUGER  
NATIONAL 
PARK 
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A time series of the natural flow at outlet from the Gutshwa River catchment based on the 
IUCMA hydrology, is shown in Figure 8.31 while the monthly distribution of the natural flow is 
shown in Figure 8.32. 
 

 

Figure 8.31: Natural flow time series at out of the Gutshwa River catchment 

 
Figure 8.32: Monthly distribution of natural flow 

 
While large areas of the Gutshwa catchment is urbanised, the water for these communities is 
all supplied from outside of the catchment. Since the water supply is erratic, it is suspected 
that many families, especially those in the new outlying more rural areas rely on groundwater 
to survive. 
 
There are some registered irrigation users but there is this little evidence of significant irrigation 
currently taking place. 
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The groundwater component of the Pitman model was setup up with the Sami parameters, as 
published in the IUCMA hydrology report (IUCMA, 2019) and calibrated using the GW 
parameter, which is the maximum rate of groundwater recharge. Calibration was carried out 
by comparing the observed groundwater level at Gauge X2N013 with the modelled changed 
in storage in the X24A quaternary catchment. See Figure 8.33. Not surprisingly, the correlation 
between the modelled storage and the observed water level is not very good since the 
borehole level will be influenced by point rainfall, which is unknown, and not the catchment 
rainfall used in the model. Also the level in the borehole is influence by abstraction which are 
no recorded. Nevertheless the general trend of change is storage from minimum to maximum 
and back to minimum is similar in the two time series. 
 

 

Figure 8.33: Modelled versus observed groundwater storage, expressed in 
dimensionless terms 

 
The projected groundwater storage, commencing in January 2019, is shown in Figures 8.34, 
8.35 and 8.36. These storages were derived using the Pitman model and the projected rainfall. 
Note that the rainfall projections are only for three months hence the limitation in the projected 
natural flows. The minimum and maximum natural flows in each month, as obtained from the 
1982 to 2021 simulation, are also shown on these graphs.
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Figure 8.34: Modelled groundwater storage using projected rainfall (January to April 3 month projection) 
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Figure 8.35: Modelled groundwater storage using projected rainfall (May to August 3 month projection) 
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Figure 8.36: Modelled groundwater storage using projected rainfall (September to December 3 month projection) 
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The groundwater model shows very low storage going into the forecast period (year 2020). 
This is consistent with observed groundwater levels in the catchment. The reason for the low 
groundwater levels is the prolonged period of below-average rainfall, as can be seen by 
plotting the 10 year moving-average of the rainfall in the catchment. See Figure 8.37. 
 

 

Figure 8.37: Rainfall in the Gutshwa catchment (10 year moving average) 
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9 RESULTS AND DISCUSSION 

9.1 Rainfall forecasting 

The rainfall forecasts using numerical climate model assessed as part of this project show 
only moderate to relatively low skill in forecasting total seasonal rainfall at quaternary 
catchment level when such a forecast is issued at the onset of the season and is based on 
ensemble simulations with numerical forecast models. The results are qualitatively consistent 
with the general understanding of predictability of southern Africa rainfall, i.e. that moderate 
levels of skill can be obtained for specific seasons and locations, while at other seasons and 
locations numerical forecasts at seasonal time scales remain unreliable. 
 
The analyses undertaken aimed at assessment and implementation of a method that 
generates information at the level of quaternary catchments, which has never been done 
before in South Africa.  
 
This shows that there is a potential for improvement of the seasonal forecast in the context of 
early warning by using ‘bespoke” rather than generic approaches and this can perhaps be 
achieved to the level that such a forecast be incorporated in a probabilistic early warning 
system. The approach can be further refined, by, for example, separating events based on 
ENSO conditions (as ENSO state is one of the sources of predictability in the southern Africa 
climate), by targeting other attributes of rainfall (such as drought indices, or duration of dry 
spells, etc.), and by incorporating external drivers such as ENSO state explicitly into the 
process of downscaling (i.e. not just indirectly though forcing’s of the numerical forecast 
model). 
 
Other conclusions reached are: 
 
• There does not appear to be one model that is universally better than other models.  
• There is a considerable heterogeneity in skill from location to location resulting in a range 

of skill values even for relatively small river basins.  This seems to be linked to the 
difference in characteristic size of the quaternary catchments and the resolution of the 
forecast information (superposition of the observational GPCC grid of 0.5 degree and 1 
degree forecast model grid). 

• The range of skill within a river basin seems to increase with the rarity of the event – i.e. 
the location-to-location differences in skill are larger for rare events. This is likely an 
expression of sensitivity of rare events skill measures to the process of fitting distribution 
in order to estimate forecast probability. 

 
The above results are not strongly supporting the idea of the use of the ensemble of models 
to forecast drought – levels of skill are low to moderate at best, and strongly heterogeneous. 
The analyses, however, provide a very strong starting point for the development of the drought 
forecasting system in that: 
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Three methods for forecasting rainfall are described in Section 4 of this report and are 
summarized here. 
 
The first method used the forecast generated by the following three models: 
 
• South African Weather Service (SAWS) using a fully coupled ECHAM4.5-MOM3-SA 

global climate model (Beraki et al. 2014). 
• NOAA’s Climate Forecasting System v. 2 (CFSv2, Saha et al. 2014, freely available 

through cfs.ncep.noaa.gov). 
• ECMWF forecast based on IFS atmospheric model 

 
The second method uses two seasonal forecast multi-model ensembles which became 
publicly available during the course of this study, namely, the NMME (Kirtman et al., 2014) 
and the Copernicus@ECMWF ensemble. These ensembles include two of the models used 
in section 4.3 – CFS v.2, and ECMWF IFS (called SEAS5 in the report).  The forecast models 
are of spatial resolution (1 deg, ~100 km) that is low enough to allow a direct use of forecast 
rainfall and temperature data on the monthly basis in further analyses. The grand ensemble 
of 11 forecast model data from world-leading climate modelling institutions is organized into a 
uniform format allowing for the use of the forecast to drive a country-wide water management 
model and performing analyses and interpretation of their results and skill within a single 
analytical framework. This allows for a relatively easy interrogation of the entire ensemble and 
generation of bespoke skilful forecasts – by, e.g., selecting individual models or the group of 
models that are characterized by forecast skill in a particular location and in a particular 
month.  
 
The third method presented in this report is a simple statistical forecast of the end-of-season-
accumulated rainfall totals. A simple statistical forecast of the end-of-season-accumulated 
rainfall totals can provide useful information a number of months in advance to the end of the 
season. Skill of such a forecast is relatively high and capitalizes on the so called “committed” 
anomaly, i.e. the anomaly that has arisen at the time of the forecast. Persistence and ENSO 
can explain little, typically less than 10% of variance of the end of the season anomaly. As a 
result, the actual usefulness of the forecast is limited to months around the middle of the rainy 
season. Too early in the rainy season, and the forecast has little skill. In the later phases of 
the season, information generated by the forecast becomes redundant. Forecast is 
monitoring-based, i.e. it needs a long time series (in excess of 30 years) of consistent data 
stretching to current. That might limit its implementability in the South African context. This 
method does not produce a time series of the forecast rainfall so it is not yet possible to use 
this method to forecast streamflow. 
 

9.2 Streamflow, soil moisture and groundwater forecasts 

Natural streamflow forecasts are achieved with the aid of an updated Pitman model, which 
was adapted to carry out simulations with multiple rainfall scenarios and hence produce an 
ensemble of streamflow time series. Implicit within the Pitman model are soil moisture and 
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groundwater modelling. Hence forecasts of soil moisture and groundwater are also produced 
as an output of the model. 

9.3 Storage forecasts 

Once the natural streamflow ensemble has been generated using the Pitman model, storage 
forecasts can be made using any Reservoir Simulation model. The IDMAPS uses the Water 
Resources Modelling Platform, which has been adapted to, operated seamlessly on this 
system, that is, carry out catchment wide analyses, including water use and storage, so as to 
predict storage in reservoirs given the starting storage of each reservoir. 
 

9.4 Pilot studies 

The IDMPAS was tested on four pilot catchments with the aim of testing streamflow prediction, 
storage prediction and groundwater prediction. Pilot catchments in three difference climatic 
zones were selected so as to assess the performance of the model under difference rainfall 
distributions. The results and conclusions from these pilot studies are summarised as follows: 
 

9.4.1 Theewaterskloof Dam 

The Theewaterskloof Dam was modelled to test storage predictions. This dam is located in a 
winter rainfall region. 
 
The projected natural streamflow for the Theewaterskloof system fall well within the envelope 
of natural flows from WR2012 with only one outlier. This at least shows that the projected 
streamflow is plausible. Without an observed streamflow to compare with, it is not possible to 
say if these projections are statistically better that random projections or better than stochastic 
models. However, the range of projected flows one and two months into the future are within 
a very small range compared to the min/max envelope which seems to suggest a useful 
projection. 
 
The projected storage in the dam lies within a tight range which also suggests a useful 
prediction. The prediction for the winter months does however underestimate the storage in 
the dam. This could either be because the rainfall predictions underestimated the recent good 
rainfall, or the abstractions from the dam were less than modelled. It needs to be noted that 
abstractions from the dam are not available in real time and there is some uncertainty as to 
how much water was abstracted during the simulation period. 
 

9.4.2 White River Systems 

The White River Systems was modelled also to test storage forecasts. This system lies within 
a summer rainfall region. 
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The rainfall predictions result in simulated runoff that is skewed towards the lower flows. 
However, this is not surprising since the runoff from summer rainfall catchments is not 
uniformly distributed but skewed towards the lower flows.  
 
Modelling the storage in the Klipkopje and Longmere dams using the predicted inflows 
resulted in an underestimate of the storage late summer months, good predictions during 
winter, and an underestimate of the storage in the early summer months. 
 
In order to check if the poor prediction lies with the hydrological modelling or the rainfall 
predictions, the predicted rainfall was compared with the observe rainfall at Klipkopje Dam. 
See Figures 8.20, 8.21 and 8.22. This shows that while the rainfall forecasts are contained 
within the long-term observed range obtained from WR2012, the predictions were not 
particularly useful with rainfall overestimated in later summer and underestimated in early 
summer. It must be noted, however, that the rainfall forecast is for a rainfall zone (X22E) while 
the observed rainfall is point rainfall at Klipkopje Dam which lies within the rainfall zone but is 
not representative of rainfall within the entire zone.  
 

9.4.3 Karatara River catchment 

This small catchment was modelled to compare forecast streamflow with observed flows. The 
catchment is located in an area which experienced rainfall throughout the year. 
 
The runoff predictions based on rainfall prediction within the Karatara River catchment fall 
within the predicted range with only one exception. These are therefore useful predictions. 
Additional analysis is however required in order to evaluate if these projections are statistically 
better that random projections or better than stochastic models. 
 

9.4.4 Gutshwa River catchment 

The Gutshwa River catchment was modelled in order to test the groundwater forecasting 
capabilities of the IDMAPS. This catchment is located in a summer rainfall area. 
 
While there are many more uncertainties in modelling and hence forecasting groundwater, the 
groundwater pilot study modelled groundwater storage consistent with observed groundwater 
levels and showed that groundwater storage changes slowly over time, much slower than 
streamflow or reservoir storage. Hence the groundwater forecasting model will be useful in 
forecasting groundwater storage. 
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10 CONCLUSIONS AND RECOMMENDATIONS 

10.1 Rainfall prediction 

Rainfall prediction using an ensemble of GCM forecasts show moderate to relatively low skill 
in forecasting rainfall at quaternary catchment level with strong month to month variability, and 
region to region as well as model to model differences in skill. In terms of seasonal differences 
– there appears to be a generally better skill of almost all models in forecasting rainfall 
anomalies in the north-east of the country in Nov-Dec-Jan and in the central part of the country 
in Dec. This is consistent with the general understanding of rainfall predictability in South 
Africa. 
 
There is a considerable heterogeneity in skill from location to location resulting in a range of 
skill values even for relatively small river basins linked to the difference in characteristic size 
of the quaternary catchments and the resolution of the forecast information. The range of skill 
within a river basin seems to increase with the rarity of the event – i.e. the location-to-location 
differences in skill are larger for rare events. This is likely an expression of sensitivity of rare 
events skill measures to the process of fitting distribution in order to estimate forecast 
probability. 
 
As an alternative to the use of GCM based forecasts, a statistical rainfall forecasting model 
was developed. This approach is based upon observations that rainfall anomalies observed 
in the beginning of the season tends to persist throughout the season, particularly when 
considered in terms of accumulated, or total season’s rainfall. A simple statistical forecast of 
the end-of-season-accumulated rainfall totals can provide useful information a number of 
months in advance to the end of the season. Skill of such a forecast is relatively high and 
capitalizes on the so called “committed” anomaly, i.e. the anomaly that has arisen at the time 
of the forecast. Persistence and ENSO can explain little, typically less than 10% of variance 
of the end of the season anomaly. As a result, the actual usefulness of the forecast is limited 
to months around the middle of the rainy season. Too early in the rainy season, and the 
forecast has little skill. In the later phases of the season, information generated by the forecast 
becomes redundant.  
 
It has not yet been possible to express the statistical forecasts in terms of rainfall time series. 
Hence this approach has not been tested within the integrated system. 

10.2 Streamflow forecasts 

The Pitman model was recoded to allow for multiple scenario runs. This was then applied to 
three pilot catchments, one in the winter rainfall zone, one in the summer rainfall zone, and 
the third in a zone which has a bimodal rainfall distribution. The streamflow predictions 
generally fall well within the probable range and hence offer plausible predictions. A 
comparison of the modelled streamflow against observed streamflow in one of the catchments 
shows promising forecasts. However, statistical analysis is required to establish if these 
predictions are a significant improvement on stochastic models. 
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10.3 Storage forecasts 

The streamflow forecasts were used to model storage change in two catchments, namely, the 
Theewaterskloof catchment and the White River catchment. The forecast in the 
Theewaterskloof closely matched the observed storage and hence the Integrated Forecasting 
Tool could be useful for forecasting storage. It must be noted though that inflow into a dam is 
not the only parameter influencing the storage in a dam. Abstractions, which in the case of 
Theewaterskloof are highly variable, are also a significant source of uncertainty. 
 
The modelling storage in the White River system was less successful but this can mostly be 
attributed to poor rainfall predictions. However, this needs to be seen in the context of model 
storage at sub-quaternary scale while rainfall predictions are made at the large Rain Zone 
scale. 
 

10.4 Groundwater/soil moisture 

The intention at the commencement of this study was to use the GRACE method to monitor 
groundwater. GRACE is a remote sensing tool which has been established as a powerful tool 
to observe water storage dynamics at large scales. However, evaluation of this technology 
concluded that GRACE is not suitable for quaternary scale monitoring. 
 
As an alternative to GRACE, groundwater and soil moisture can be modelled within the Pitman 
model using methods proposed by Sami (2007) and Hughes (2007). These methods are 
already incorporated into the commercially available Pitman model. Groundwater algorithms 
derived from the publications of Sami and Hughes were incorporated into the recoded Pitman 
model used for this project. While groundwater and soil moisture have been modelled using 
this method, more work is required to assess if these projections are statistically significant or 
not. The pilot study carried out with a specific focus on groundwater show promising results 
but it is clear that groundwater storage changes at a much slower rate than surface runoff. 
Hence, a three month forecast is of limited value. 
 
It is noted that soil moisture, from an agricultural perspective, relates to only the top 300mm 
of soil, while the Pitman model considers the entire soil profile. Soil moisture in the top layer 
of soil varies very rapidly and daily modelling would be required to forecast soil moisture (from 
an agriculture perspective). It is plausible that the Daily Pitman model could be recoded to this 
application. The feasibility of using daily time step rainfall projections and the Daily Pitman 
model would need to be investigated in more detail as a possible of means of making short-
term soil moisture forecasts for agricultural purposes. 
 

10.5 Way forward 

The Integrated Forecasting Model shows promising signs in two of the three pilot catchments. 
Ongoing deployment and testing of the model is therefore recommended in these and other 
catchments. This can be done as follows: 
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• The Inkomati Catchment Management Agency have shown an interest in using this 

model. Working with the IUCMA the model can be extended to include the whole 
Crocodile catchment for testing on a large catchment than currently modelled. 

• The White River Valley Conservation Board have shown an interest in the model and 
IWR Water Resources will continue to apply the model on the White River catchment 
by carrying out monthly runs. 

• DWS have recently commenced with the Stand Alone Dams study. IWR Water 
Resources are involved in this study and undertake to apply this model in any systems 
which are set up using WReMP. 

 

10.6 General recommendations 

Inflow into a dam is not the only uncertainty in forecasting the storage in the dam. Abstraction 
and releases from the dam can also be uncertain. Usually abstractions and releases are 
modelled based on an operating rule which subject users to restriction during time of drought. 
However, for a variety of reasons, the rules are not always applied as modelled, resulting in 
dam storage deviating from projections. Real time data on abstraction and releases are not 
always available which make it impossible to assess the accuracy of a forecast on a month 
the month basis. It is therefore recommended that system which require forecasting should 
also install real time monitoring to all components of the water balance, namely: 
 
• Rainfall 
• Storage 
• Abstractions 
• Releases 
• Groundwater monitoring (storage and abstractions) 
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1 Objectives of the website 
 
The CSAG seasonal forecasting website is intended to provide:  
 

access to and ability to interrogate a range of data sources and derived products 
informing seasonal forecast of rainfall in South Africa, particularly in the context of 

drought early warning 
 

2 Data sources 
The website utilizes the following data sources: 

• Two multi-model dynamical seasonal forecast ensembles: 
o European Centre for Medium range Weather Forecast hosted by Copernicus 

Programme (ECMWF@Copernicus) obtained from 
https://cds.climate.copernicus.eu 

o North American Multi-Model Ensemble (NMME) hosted by IRI Columbia 
University, with data downloaded from 
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/index.html 

 
 

• Two historical gridded rainfall datasets: 
o Global Precipitation Climatology Centre (GPCC) dataset with data 

downloaded through https://www.dwd.de/EN/ourservices/gpcc/gpcc.html 
o CHIRPS with data downloaded through https://www.chc.ucsb.edu/data/chirps 

 

3 Products 
Data from the above sources are processed to generate a range of forecast products relevant 
from the point of view of the objectives of the website. These presented in the form of 
interactive maps, numeric values and interactive graphs. 
 

3.1 Dynamical seasonal forecast 

3.1.1 Background 
For each model from the dynamical forecast ensemble and for each rainfall region used by 
the WR2012 Pitman model over South Africa. 
 
NMME forecast data are available through the University of Columbia 
(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/) and included forecasts from five 
models coded: 

• NCEP-CFSv2 
• NCAR-CESM1 
• CanCM4i 
• GEM-NEMO 
• NASA-GEOSS2S 

https://cds.climate.copernicus.eu/
https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/index.html
https://www.dwd.de/EN/ourservices/gpcc/gpcc.html
https://www.chc.ucsb.edu/data/chirps
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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Copernicus@ECMWF ensemble is available through Copernicus Climate Data Store: 
http://cds.climate.copernicus.eu, and includes forecast from four forecast models (available in 
mid-2019, but seven are available in Nov 2020): 

• ECMWF IFS 43.r1 – coded here SEAS5 
• Meteo-France ARPEGE 6.4 model  – coded here System7 
• DWD ECHAM 6.3 model coded here GCFS v.2.0 
• CMCC CESM-CAM model, coded here SPS3 
• JMA MRI-CPS2 model, coded CPS2 

Apart from the above, Copernicus@ECMWF ensemble includes CFSv2 (the same as 
NMME), UK Met Office HadGEM3 system (at the time these analyses were conducted it did 
not have comprehensive dataset allowing its incorporation here). 
 
Individual models in each of the ensembles differ in the atmospheric, land surface and ocean 
sub-models used, in the process of initialization (staggered, or perturbed), in spatial resolution 
(1-2 deg), duration of the simulation (up to 12 months) and size of the ensemble (3-50 
members). Details of each of the Copernicus@ECMWF models can be found at  
https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+seasonal+multi-system, 
while details of the models can be found through links on the data source web page 
(http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/). Models contributing to each of 
the ensembles are subject to periodic updates to newer versions, and as a result model names 
change from time to time.  
 
Both ensemble forecasts are issued every month, with NMME ensemble forecast available on 
the 5th of each month, while the Copernicus@ECMWF ensemble available on the 13th.  
 
As mentioned above, forecast data from both ensembles are generated every month by the 
modelling centres generating individual forecasts. Retrospective forecasts are available for all 
the models for the period of 1993-present for the Copernicus@ECMWF ensemble, and 1983-
present for the NMME ensemble.  
 
The website presents only recent forecasts (since Jan 2020), but data from all available 
retrospective forecasts are used to bias-correct the data, calculate anomalies and skill 
indices.  

3.1.2 Rainfall Forecast Data in Pitman model format 
One of the presented products is a set of files containing rainfall data to force the Pitman 
model in order to generate the hydrological forecast for the next three months. 
 
These files contain a time series of monthly rainfall data spanning 3 months from the time of 
the forecast (including the month of the forecast), merged with a time series of historical rainfall 
obtained from the GPCC rainfall dataset, as per figure below: 
 

http://cds.climate.copernicus.eu/
https://confluence.ecmwf.int/display/CKB/Description+of+the+C3S+seasonal+multi-system
http://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/
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The merging with the historical observations ensure that the hydrological forecast is initialized 
from a model state reflecting antecedent conditions. Since the individual forecast models of 
the multi-model ensemble generate a probabilistic forecast, i.e. forecast that is based on the 
so-called “initial condition ensemble” simulations, the hydrological forecast is also to be 
prepared in the probabilistic mode.  The time series product thus encompasses 10 time series 
for each of the forecast models. These series are different only in terms of the 3-month forecast 
data, as the historical period data (based on rainfall monitoring products) are considered as 
deterministic, and thus identical across the 10 files. 
 
The data for each of the forecasts (months) and each of the available models can be 
downloaded following the link at the bottom of the side menu on the website. 
  

3.1.3 Forecast of aggregated 3-month rainfall 

3.1.3.1 Forecast indices 
 
A number of indices are calculated that describe forecasts of rainfall aggregated over 3 months 
(i.e. the 3 month total rainfall)  in both deterministic and probabilistic terms and both in terms 
of forecasting a continuous variable (i.e. the actual rainfall amount), and forecasting a 
categorical variable (i.e. a drought event of a particular severity).  
 
Forecast in a categorical form, i.e. forecast a category, or a range of values, might be 
expressed in probabilistic terms, i.e. forecast of a category occurring will have a probability 
associated with it. A categorical forecast is the traditional way of presenting seasonal climate 
forecast, with three categories, or terciles. Tercile forecast distinguishes: the above normal 
conditions (e.g. rainfall higher than the 66th percentile of its historical distribution), the below 
normal conditions (falling below 33rd percentile) and the normal conditions (falling between 
the 33rd and 66th percentile of historical variability), and provides a probability of each 
category, e.g. 45%, 30% and 25% (these probabilities obviously have to sum to 100%).  
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From the perspective of the objectives of the website, a forecast of below normal conditions 
is in fact a forecast of drought conditions, or a drought event that occurs on average once in 
3 years. By analogy, one can consider a forecast of a 1 in 10 year drought event that would 
indicate rainfall lower than the 10th percentile of historical distribution. Such a forecast would 
be a binomial in a sense that it would consider a “non-event”, i.e. rainfall higher than the 10th 
percentile of historical distribution, without detailing how high the actual value will be. 
 
Considering that most of the models in the multi-model ensembles have only 10 ensemble 
members, calculations of probabilities of severe droughts is not very feasible, and thus only 
droughts with probability of occurrence of not less than 0.1 or not more frequent than one in 
10 years were targeted.  
 

3.1.3.1.1 Deterministic forecast indices – continuous variable 

1. Median of the initial condition ensemble, i.e. the median of the 3-month mean rainfall 
forecast by all individual simulations of a given forecast model (deterministic) 
 

2. Deterministic relative anomaly, i.e. the anomaly, in percent, of the ensemble media 
calculated with respect to the climatological mean over the three month period. 

 

3.1.3.1.2 Probabilistic forecast for categorical variable – probability of drought  
1. Probability of “above-normal” rainfall, i.e. rainfall falling within the upper tercile: 67-

100 percentile range. 
2. Probability of drought events at three levels of severity: one in 3-year, one in 5-year 

and one in 10-year events. The one in 3-year event is equivalent to the “below 
normal” tercile forecast.  

 

3.1.3.1.3 Deterministic forecast for categorical variable (drought events) 
 
While a probabilistic forecast of a drought event might have its merit in many contexts, as it 
allows for a context specific interpretation of probability associated with an event (e.g. in some 
context, drought preparing action might be triggered by when there is a 30% probability of a 
drought occurring, while others, less risk averse ones, might require a higher probability, say, 
50%. In spite of this, a probabilistic event forecast remains difficult to communicate and often 
to understand. An alternative to such forecast is a deterministic event forecast, i.e. a statement 
– a drought will or will not occur. Similarly to the deterministic forecast of a continuous 
variable, such a forecast statement can be obtained from a probabilistic forecast assuming a 
certain threshold probability that allows converting the probabilistic forecast into an 
(apparently) definitive statement. In this case the producer of the forecast imposes their idea 
of what the probability cutoff threshold, and thus risk (or uncertainty) tolerance of the user is. 
 
Ideally, the threshold in terms of probability or risk would be formulated, say, if a forecast 
indicated the probability of an event to be double of its climatological probability it would then 
be considered that the event is highly likely to happen and hence “forecasted” in a 
deterministic sense. However, using a multiplicative factor as a threshold is not a very 
convenient measure in this context, although perhaps the most intuitive one. What would be 
double the probability of the event having a climatological 66% probability of occurring? 
 
In the forecast website, the event threshold as “double the climatological odds” of the event 
was formulated. The odds of an event represent the ratio of the (probability that the event will 
occur) / (probability that the event will not occur). This could be expressed as follows: 
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Odds of event = p/(1-p) 

 
Where p is the probability of a given event occurring.  
 
Now, if each of the three drought events that were considered has a given climatological 
probability (pclim), i.e. one in 3 year drought has a 33% probability of occurrence, on in 5 year 
– a 20% probability of occurrence, and one in 10 year – a 10% probability of occurrence, the 
climatological odds of these events (Oclim) can be calculated as follows: 
 

Oclim=pclim/(1+pclim) 
 
For the three considered events, climatological odds will be: 
 

Oclim=0.33/(1-0.33)=0.493 for one in 3 year event 
Oclim=0.20/(1-0.20)=0.25 for one in 5 year event 
Oclim=0.1/(1-0.1)=0.111 for one in 3 year event 

 
Through simple arithmetic, the “double odds” and probability required for the odds to double 
can be calculated as follows: 

O2=2*Oclim 
 

pO2=O2/(1+O2) 
 

The probability associated with double climatological odds is thus: 
 

pO2=0.986/(1+0.986)=0.49 for one in 3 years drought 
pO2=0.5/(1+0.5)=0.33 for one in 5 years drought 

 pO2=0.222/(1+0.222)=0.18 for one in 10 years drought 
 
The drought event is thus considered to be “forecast” by a given forecasting system, if the 
forecast probability of that (or more severe) event is larger than the pO2.  
 

3.1.3.2 Forecast skill measures 
A number of skill indices describing the skill of the 3-month aggregated rainfall forecast for 
both the deterministic and probabilistic forecast (as per 
https://www.cawcr.gov.au/projects/verification). 
 

3.1.3.2.1 Skill for deterministic forecast of a continuous variable 

For the deterministic forecast based on the ensemble median, skill is assessed through 
anomaly correlation, i.e. Pearson’s correlation coefficient between forecast and observed 
anomalies (anomaly of the median of the forecast ensemble and that of the actual observed 
value, both calculated over climatological mean). 
 

3.1.3.2.2 Probabilistic forecast of a (binomial) categorical variable 

One of measures of skill of a binomial probabilistic forecast is receiver operating characteristic 
(ROC) skill score. ROC skill score describes the ability of the forecast to discriminate between 
events and non-events. ROC skill score is based on the ROC curve. In a ROC curve the true 

https://www.cawcr.gov.au/projects/verification
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positive rate is plotted as a function of the false positive rate for different cut-off points of 
probability used to separate events from non-events as in the figure below.  

 
 
Each point on the ROC curve represents a pair of true and false positives corresponding to a 
particular probability decision threshold. The area under the ROC curve (AUC) is a measure 
of how well a parameter can distinguish between two diagnostic groups (e.g. first tercile vs. 
non-first tercile). ROC skill score relates ROC AUC for given forecast to the ROC AUC 
obtained under random forecast. ROC skill score value of 1 denotes a perfect forecast, ROC 
skill score of 0.5 indicates that forecast is not better than a random guess.  
 

3.1.3.2.3 Deterministic forecast of a (binomial) categorical variable 

A deterministic binomial forecast yields results that are relatively easy to interpret in terms of 
skill – one can relatively easily evaluate number of hits (event occurred and was forecast), 
correct negatives (event did not occur and was not forecast), misses (event occurred but was 
not forecast) and false positives (event was forecast, but did not occur). That is often present 
in the form of a contingency table as in the figures below: 

a.  

b.  
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Expressing skill of a deterministic binomial forecast in a single, numerical value, is, however, 
surprisingly difficult. While an intuitive measure of skill accuracy would be for example “percent 
correctly forecast”, i.e. ratio of hits to total events, such a measure does not take into account 
such a factor as the number of false positives. To illustrate the problem with the “percent 
correctly forecast” as a skill measure, a forecast that issues a warning every time, would 
correctly forecast 100% of events, but it would obviously be very poor. Other skill measures 
suffer similar deficiencies, and these deficiencies magnify if forecast is of rare events (i.e. if 
there is considerably more non-events than events as is the case in severe droughts). 
 
There is a plethora of skill measures that express skill of deterministic binomial forecast – see 
for example 
https://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts. 
Most of the commonly used skill measures are sensitive to the climatological frequency of the 
forecast events, and are thus not applicable to rare events (as is the case with droughts). 
 
In the website, two skill measures are used: 
 
Accuracy  
Accuracy, or in other words “fraction correct”, quantifies the fraction of the binomial forecasts 
that were correct:  

 
The accuracy values range between 0 and 1, and are relatively simple and intuitive. This skill 
measure can be misleading since it is heavily influenced by the most common category, 
usually the "no event" in the case of drought events. 
 
 

2. Odds Ratio Skill Score (ORSS) 
ORSS is the most universal and robust skill measure that is applicable to forecast of rare 
events: 

 
 

Its main drawback is that ORSS is not determined when any of the rows or columns in the 
contingency table are completely zero, which might happen in operational forecast post-
processed to derive rare events. Such a situation simply indicates that the forecast is not 
realistic. 
 

3.2 Current rainfall information based on monitoring data  
For each of the historical (monitoring) datasets, the following indices capturing current rainfall 
are derived: 

• Total accumulated rainfall since the beginning of the season. 
• Relative anomaly (in %) of the total accumulated rainfall calculated over 

climatological mean 
• Rainfall-based drought index – the Standard Precipitation Index (SPI) 

calculated at four time scales: 3-month, 6-month, 12-month and 36-month.  
 

https://www.cawcr.gov.au/projects/verification/#Methods_for_dichotomous_forecasts
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3.3 Statistical forecast of rainfall anomaly at the end of the rainy 
season 

3.3.1 Background 

The approach presented here was originally developed by P. Wolski and P. Johnston for the 
forecast of rainfall anomaly during the 2015-2017 Cape Town Drought, and published as a 
popular science blog https://www.groundup.org.za/article/will-there-be-more-rain-winter/ and 
http://www.csag.uct.ac.za/2018/03/15/will-there-be-more-rain-this-winter/ 

It is based on observations illustrated in the figure below, that rainfall anomaly observed in the 
beginning of the season tends to persist throughout the season, particularly when considered 
in terms of accumulated, or total season’s rainfall. 

  

 

Illustration of relationship between end of season accumulated rainfall and current rainfall 
anomaly. Top figure illustrates monthly accumulated rainfall for each year in a 47 year period. 
Middle row from top illustrated how (categorical) anomaly in the end of April diversifies 
accumulated rainfall “trajectories”. Bottom row shows the same but for the end of July. 

There could be an underlying climate factor that causes lower (or higher) rainfall, and that 
persists throughout seasons. In this way, the amount of rainfall in the beginning of the rainy 
season is an indicator of the amount of rainfall the rest of the season receives. However, the 
majority of the effect arises due the fact that this considers the accumulated rainfall figures. 
As a result, an anomaly occurring earlier in the season has bearing to the total rainfall at the 

https://www.groundup.org.za/article/will-there-be-more-rain-winter/
http://www.csag.uct.ac.za/2018/03/15/will-there-be-more-rain-this-winter/
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end of the season. The role of the actual anomaly increases as the season progresses – thus 
anomaly in the beginning of the rainy season has little implications to the total rainfall that 
year, but anomaly towards the end of the season is not likely to be reflected in the annual 
total.  

This observation lends itself to the formulation of a probabilistic forecast of end of the season 
anomaly as a function of the anomaly in the month of forecast in two forms. 

• Categorical forecast – probability of above-, below- and normal rainfall total based on 
current tercile. This forecast is simply formulated by creating contingency tables of 
number of cases when in historical observations an association between current 
tercile and end of the season tercile occurred. This contingency table can then be 
presented in terms of probabilities. A series of contingency tables lead to a schematic 
as in the Figure below. 

 

 
Simple categorical forecast of end of the season anomaly of total rainfall based on the current 
anomaly of accumulated rainfall. This particular forecast is for a sub-catchment located in the 
winter rainfall region, with the extended rainy season spanning April-September. End-of-the 
season drought can be predicted with a considerable probability already in April. 
 

• Forecast of rainfall anomaly based on linear regression between current and end of 
the season anomaly. The basis for this forecast is illustrated in the figure below. 

 

Correlation between the end-of-season and current anomaly of accumulated rainfall in a 
sub-catchment in the winter rainfall region. 

In the forecast, a linear regression is constructed based on historical data and 
parameters of the regression equation are used for prediction based on a given data. 
Since prediction using linear regression have an associated prediction error, that can 
be used to  formulate prediction probabilities for different categories of anomalies, i.e. 
below-, above- or normal, or other, more relevant from the point of view of drought – 
e.g. 1 in 10 year drought.     
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Only the latter is implemented on the website. 

 

3.3.2 Forecast of end-of-season rainfall anomaly based on linear 
regression of current rainfall anomaly and additional explanatory variables 
 
In the basic version of the forecast, a linear regression is constructed based on historical data 
and parameters of the regression equation are used for prediction based on a given data 
obtained from monitoring.  
 

PAseason=amPAm+bm+m 
 
where PAseason is the end of season anomaly, PAm is the anomaly of accumulated rainfall in a 
given month, am and bm are parameters of the regression model that are specific to the month 
(and obviously location), and εm is the model error.  
The forecast is then simply based on 
 

PAseason,fcst=amPAm,obs+bm+m 
 
Where index fcst indicates the value that is forecast, and index obs indicates an observed 
value of anomaly in a given calendar month. 
  
Since the prediction using linear regression have an associated prediction error (in the 
simplest linear regression case considered to be normally-distributed), that can be used to 
formulate prediction probabilities for different categories of anomalies, i.e. below-, above- or 
normal, or other, more relevant from the point of view of drought – e.g. 1 in 10 year drought.  

The extended version of the forecast includes additional variables. Since it is known that 
seasonal rainfall anomalies in South Africa are associated with the state of global modes of 
variability, such as ENSO, AAO and IOD, and that these modes drive seasonal predictability 
of rainfall, they were included as additional explanatory variables in the regression model.  

PAseason=amPAm+cENSOm+bm+m 

where ENSOm is the value of the ENSO index in month m. 

 
The forecast model has been implemented at the WR2012 quaternary catchments using 
gridded blended satellite-station rainfall product – CHIRPS v. 2.0. The monthly gridded data 
over the 1970-2018 period were interpolated to the level of WR2012 sub-catchments. The 
regression model was developed for each individual catchment. Because South African 
rainfall is characterized by three seasonality regimes – summer, winter and all-year-round, the 
model was set up considering local season for each of the quaternaries. That differentiation 
was obtained by hierarchical clustering of standardized rainfall climatology into three classes. 
The Jan-Dec season for winter rainfall regime was use, and the July-June rainfall season for 
summer and all-year-round rainfall regime. The results are presented as:  

• Forecast of total season’s rainfall 
• Forecast of relative rainfall anomaly 
• Forecast of probabilities of tercile categories: below-normal, normal and above-

normal rainfall. 
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4 Basic functionality of the website 
The website displays forecast information in the form of a map, and the information mapped 
is selected using the side contextual menu. Information about the currently mapped variable 
is shown in the top-left corner, and map legend is shown in the bottom-left corner. 
 

 

4.1 Contextual Menu 
The contextual menu located on the right-hand-side of the screen provides access to the 
various products. 
 
The menu is contextual in the sense that its contents adjusts depending on options selected 
by the user. 
 
The menu is organized in a number of panels as in the figure below: 



 

133 
 

 
Select Date 
The “Select Date” panel shows dates for which forecasts are available. 
 
Select Dataset 
The “Select Dataset” panel shows datasets that are available for the selected date. A dataset 
here is either: 

• a dynamical forecast by a single model 
• the statistical forecast based on monitoring data 
• a monitoring dataset  

 
Datasets that do not have data for a particular date are shaded out. 
 
Select Variables 
The “Select Variables” panel shows forecast indices and skill scores available for the selected 
dataset. The contents of this panel differs depending on which “type” the selected dataset is. 
For the dynamical forecast this panel will look as follows: 



 

134 
 

 
 
For the monitoring dataset, the panel will look as follows: 
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When the statistical forecast of the end of season rainfall anomaly is selected as a dataset, 
the “Select variables” panel will look as follows: 
 

 
 

Selecting each of the main options displays the selected variable/index on the map, and opens 
the “mask” menu for that option. 
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The “mask” menu allows for masking (shading) the map by either values of the selected 
variable, or by skill of the selected forecast in predicting that variable. 
 
If mask is applied, the masked map will look similar to this one: 
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Select regions 
“Select regions” panels allows for selecting the type of regions shown in the map. At this stage, 
only quaternary catchments are shown. It is envisaged that different regions might be used in 
the future – tertiary or secondary catchments, or administrative units. 
 
Select auxiliary coverage 
“Select auxiliary coverage” panel allows for overlaying additional spatial units – such as 
province boundaries: 
 

 
 

Download data 
“Download data” panel provides a link to downloading data for the selected forecast (if 
available) in the Pitman model format. These data span historical period (based on GPCC 
monitoring data) and three months forecast ahead of the forecast date. 
 

 
 

4.2 Interacting with maps 
The map presented in the website is interactive in the sense that it can be panned and zoomed 
in/out, but most importantly, allowing access to additional, detailed information at the 
quaternary catchment level. 
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Firstly, information at the quaternary catchment’s (or region’s) level is displayed in the map 
legend when hovering with the mouse pointer over given region: 
 

 
 
Secondly, a number of graphs are shown when a quaternary catchment/region is clicked on. 
Graphs are different for each of the three types of datasets, and they are described in details 
in the next section. 
 

4.3 Graphs and figures 

4.3.1 Graphs for dynamical forecast 
Information at the quaternary catchment level is provided in the form of the following graphs: 
 
 

1. Time series of observed and forecasted rainfall values (deterministic forecast) 
 

 
 
This figure shows: 

• historical observed values of the 3-month aggregated rainfall for the period of 1981 to 
present, showing only the three month period of the selected forecast. For example, 
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if the selected forecast is for January 2020, it spans the months of January through 
March (JFM), and only these months are shown in the graph. The observed values 
are shown as bars. 

• Ensemble median of all historical forecasts for the selected three month period 
(diamonds). It is worthwhile noting that for some models, the available historical 
forecasts does not cover the entire 1981-present period, so there might be some 
diamonds missing in the figure, particularly in the most recent years.  

• Ensemble median of the current forecast – that is the most recent diamond that is 
not accompanied by the bar showing the observed value  

• Rainfall values corresponding to the median of the historical rainfall, and levels of 
droughts of different magnitude – from one in 3 year, one in 5 year and one in 10 
year, derived based on historical observed data. These are shown as a set of 
horizontal lines. 
Some elements of the figure can be shown/hidden either by clicking on the legend, but 
also by selecting option from the menu in the top-left corner. In this way, for example, 
rainfall forecast by all individual members of the forecast ensemble may be shown. 

 
 

2. Time series of observed and forecasted drought events (deterministic and 
probabilistic forecast) 

 

 
 
This figure shows: 

• Probabilities of the selected “event” or forecast category (i.e. below normal, or 1 in 5 
year drought, etc.) in all historical and in the current forecast. These are shown as 
bars. The first bar from the right-hand side of the figure represents the current 
forecast. 

• Forecasted “events”, with events defined by probability of forecast of given category 
equal to or higher than the one when the odds of the category are double those of 
climatological (see section 3.1.3.1.3 for details). These are shown as blue 
diamonds. 

• Historical events, i.e. years when observed rainfall fell within the selected category. 
These are shown as red circles. Notably, when the blue diamonds and red circles 
overlap – this is when the historical forecasts managed to correctly forecast actual 
observed event. 
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The forecast category shown in the graph can be changed using the options menu at the top-
left corner of the figure.  
 
 

3. Scatterplot of observed and forecasted rainfall values (deterministic forecast)  
 

 
 
This graph is intended to illustrate the deterministic skill of the forecast. It shows a relationship 
between the historical observed rainfall values and forecasted values. The forecasted values 
are shown either as a median of the ensemble, and/or as a set of individual ensemble 
members values. What is shown is selected from the options menu in the top-left corner of the 
panel. Also shown is a 1:1 line, illustrating what would be a perfect agreement between the 
observed and forecasted values. The current forecast is not shown in this figure, because 
there is no observed value for the current forecast yet. 
 
 

4. Two figures illustrating probabilistic skill of the forecast 
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These figures show reliability diagram and ROC curve. The event or forecast category the 
figures describe can be selected from the options menu located in the top-left corner of the 
panel. Way to interpret these graphs can be found here: 
https://www.cawcr.gov.au/projects/verification/#Methods_for_probabilistic_forecasts 
  

4.3.2 Graphs for monitoring data 

4.3.2.1 SPI time series 
The graph presents time series of SPI at four time scales: 3-, 6-, 12-, and 36-months. 
 

 
 
Individual time series can be hidden/shown by clicking on the graph legend: 

https://www.cawcr.gov.au/projects/verification/#Methods_for_probabilistic_forecasts
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4.3.2.2 Rainfall graph 
The graph presents rainfall data in three forms: 

• As accumulated rainfall for each season/hydrological year 
• Time series of monthly data 
• As monthly values for each season/hydrological year 

 

 
The “first month” selection box enables adjustment of the beginning of the hydrological year 
to local conditions. 
 
Selecting a year through the “highlight year” box does exactly that – highlights the year in the 
graph: 
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4.3.3 Graphs for statistical forecast 
 
In the current version of the website, the graphs illustrating the statistical forecast of the end 
of the season anomaly are not yet implemented. They will be implemented in the future. 
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