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Abstract

This paper is the second in a series of three which deals with numetic techniques for biological reaction systems. For the steady state pro-
blem, a set of simultaneous non-linear algebraic equations must be solved. Representing the mass balance equations in a matrix format
assists in the choice of suitable numetical solution procedures. Five widely-used procedures are evaluated and compared in application to the
types of flow sheet encountered in practice. Newton’s method, with a finite difference approximation to the Jacobian, was the most suc-

cessful technique.
Introduction

In a biological reaction system, ‘‘steady state’’ conditions are
defined as those where the system operates under conditions of
constant input flow rate and load and whete the operating condi-
tions are held constant. The problem in modelling is one of
predicting the state of the system for different system configura-
tions and operating conditions. That is, under these constant in-
put conditions, the response of each compound in each complete-
ly mixed reactor is described by a single concentration value
which does not vary with time. It is these concentration values
that provide the solution to what is termed the ‘‘steady state’’
problem.

A system which operates under steady state conditions as
described above can be characterised by a set of simultaneous
mass balance equations which include non-linear terms. Any
time-dependent or derivative terms will be zero, and the set of
equations will therefore be algebraic. The solution to the system

of non-linear algebraic equations cannot be expressed in closed.

form, so ‘“‘exact’’ of direct methods cannot be applied. Instead,
iterative procedures must be employed. These require an initial
estimate of the solution which is updated via a linear approxima-
tion of the relevant mass balance functions. The updating pro-
cedure is repeated until convergence is achieved. The main con-
cern is the selection of a solution technique that will guarantee
convergence. Additional considerations in the choice of a suitable
numerical method would be its computational -efficiency,
robustness and stability.

A case study: continued

In Part 1 of this series of three papers a case study problem based
on a simple biological model and comprising a single completely
mixed aerobic feactor plus settling tank was introduced (Fig. 1).
The response of the system is described by eight mass balance
equations, one for each of the four compounds in the reactor and
in the underflow recycle from the settler (Eqs. (14) to (21) of Part
1). Under steady state conditions, any derivative terms in these
equations fall away, and the resultant eight steady state mass
balances become:
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These equations may be written in the form f(x) = 0 where x is
the vector of state variables:
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Figure 1
A case study: a single aerobic reactor with settling tank.
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A matrix representation of the steady state mass balance equations for a

single reactor and setrling tank system. Additional subscripts i and r

denote the concentrations in the influent and the underflow recycle
respectively.

Some insight into appropriate numetical solution procedures for
the steady state problem may be gained by representing the
equations in a matrix format.

The steady state matrix

The matrix representation is used here because it gives a concise
summaty of the steady state problem. It shows, amongst others,
features such as feed distribution, the flow links between reactors
and the conversion processes, in a ‘‘graphical’’ manner.

Consider how the eight simultaneous steady state mass
balance equations (Egs. (1) to (8)) of the case study are transform.-
ed into the matrix format in Fig. 2. The equations are expressed
in the form:

AX =8B

The X vector: Egs. (1) to (8) are mass balances for the eight state
variables Xg, X, ...... . X5, and Sg . These state variables form
the X vector, which is the solution to the steady state problem.

The B vector: This is the *‘feed vector’’. It contains the elements
of the rigth-hand sides of Egs. (1) to (8). Each term is the influent
mass input rate of the corresponding compound into the par-
ticular zone (negative value). In this case, the first four values are
the influent mass input rates of X, X, X and S; into the reac-
tor. The last four values are the influent inputs into the settler
(zero here).

The A matrix: The A Matrix contains the teaction and flow terms

which characterise the particular activated sludge system con-
figuration. It is of interest to note how the non-linear terms are
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handled. Consider how Eq. (1) is inserted in the top row of the
matrix. The linear terms can only be placed in one location.
These are ~(Q; + Q,), Q, and ~ bV. However, the non-linear
term (i Sg X V/ (K + Sg)) can be handled in two ways:

- (jSs V/ (Kg + Sg)) in the X, location
or
- (X5 V/ (K + Sg)) in the S location

In this case, the second option has been used.

The A matrix is always square and has dimension (number
of compounds x (number of reactors + 1)). This system contains
four different compounds and one reactor (plus settler). Hence,
the size of the A matrix will be eight by eight. Each four by four
*‘block” of the matrix contains specific information about the
nature of the system being analysed.

® The upper left “‘block’ contains terms for the reaction pro-
cesses occutring in the reactor. Also, on the diagonal, flow-
related terms appear. These represent the total flow out of the
reactor (equal to the sum of the flows into the reactor i.e.
-(Q + Q).

® The lower right block represents the settler. Because no reac-
tion takes place in the settler, only flow-related terms appear.
These represent flow out of the settler which is recycled within
the system (-Q, for particulate and -1 for soluble com-
pounds).

@ The diagonal vector, Q,, in the upper tight block of the
matrix represents the underflow recycle from the settler to the
first reactor. Flows directed upstream or ‘‘backwards’’ such as
recycles will always lie above the diagonal blocks of the A
matrix.
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® The diagonal vector (Q; + Q,), (with + 1 for the soluble com-
pound) in the lower left block of the matrix represents the
flow from the reactor into the settling tank. Downstream or
“forward’’ flows will always lie below the diagonal blocks of
the A matrix.

Let us now extend the example to a system consisting of n reactors
in series, followed by a settling tank. The system can be
represented in general matrix format as shown in Fig. 3.

The X vector: The x vector contains the terms Xp 1o Xp v eeees
X .+ Sg .. These are the concentrations of the compounds Xg,
X, Xg and S in reactors 1, 2, ...., n and in the underflow recy-
cle from the settler, 1. These state variables form the solution to
the steady state problem.

The B vector: The B vector contains the feed terms which are the
influent input rates of the corresponding compounds into each
reactor. In situations where all the feed enters the first reactor,
only the first four terms will appear in the vector; all other terms
will be zero. If the feed to the system is split, with a portion of
the feed entering the k™ reactor, then the corresponding loca-
tions in the B vector will accordingly be filled with non-zero
terms.

The A matrix: This is a square matrix of dimensions ((n + 1) x no.
of compounds). The large matrix can be subdivided into (n +1)
by (n + 1) submatrices. Each submatrix is square with dimension
equal to the number of compounds.

Consider the k™ reactor in the seties. The terms representing
the conversion processes occurring in the k™ reactor will be
situated in the k™ reactor *‘block’” on the diagonal of the A
matrix as indicated in Fig. 3. In addition, the diagonal within the
k™ reactor block will contain tetms representing flow out of the
k™ reactor. Flow from the k™ reactor to the (k + 1) reactor in the
series will be represented by a diagonal vector containing the rele-
vant flow terms in a block situated directly ‘‘below’” the k' block
on the diagonal. That is, the vertical location of the block will be
fixed opposite the column representing the k' reactor. The
horizontal location of the block will be fixed by the column
representing the (k + 1)t reactor.

Recycle flows from one reactor to another in the series are
handled in a similar fashion. A recycle from the k™" to the i*" reac-
tor in the series will be represented by a diagonal vector contain-
ing the relevant flow terms in a block situated above the diagonal
of the A matrix. The vertical location of the block will be fixed by
the column representing the k™ reactor and the horizontal loca-
tion of the block will be fixed by the column representing the i*"
reactor. In general, the vertical position of the submatrix
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processes the settler g1 into
REACTOR 1 in the first to the Xe.s the first
reactor first reactor Se.s reactor
| I { | | | I ! 1 bl |
Conversion Recycle L T Feed
processes from the '* Xeos into
REACTOR i in the i'* to the it* Xs.s the i**
reactor reactor Ss.1 resctor
[ ! I | | | I | 1 1 l
Conversion Recycle from ) Y Feed
processes the settler Xe.n into
REACTOR k in the k'* to the 1 O the k**
reactor k** reactor Se.x reactor
Flow
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(ke1) to the (ke1)**
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[ | | ! ! | {1 I {
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REACTOR 1§ REACTOR i REACTOR & REACTOR n SETTLING TANK
Figure 3

T/ze steady state mairix representation of an n reactor system. Each block
in the matrix corresponds 10 a submatrix of dimension (number of com-

Dbounds).
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represents flow ‘‘out of”’ that reactor. The horizontal position of
the submatrix represents flows *‘into’’ that reactor.

Solution to the steady state problem

The topography of the steady state matrix provides a graphical il-
lustration of the salient features of the system. It also has specific
implications for the nature of a suitable numerical solution pro-
cedure. The matrix presentation shows how the numerical pro-
blem has a very definite structure. This is dictated by the
biological reaction processes as well as the system configuration,
particularly the manner in which the series of reactors in the
system are interlinked. A significant part of any solution techni-
que is to convert all this structural information into a form in
which it can be exploited to reduce computational effort in fin-
ding the solution.

The matrices resulting from flow-sheeting problems for
systems comprising a number of units are often solved using
techniques such as partitioning with precedence ordering and
tearing (Westerberg ez 4/., 1979). These techniques involve con-
sidering each unit separately, and partitioning the matrix into a
number of smaller submatrices (i.e. the diagonal ‘‘blocks’’ in our
case) which are then solved individually. The most appropriate
sequence in which to solve the individual units can be determin-
ed by a process of precedence ordering. In solving the individual
units, we may require estimates of the values of the concentra-
tions in streams from other units yet to be solved. Estimation of
these concentrations is termed tearing of the system. As 2 result
of this process of estimation, the solution procedure for the com-
plete system of interlinked units is an iterative one. If the recycle
flows are not particularly significant, then this approach is a
suitable one. However, with biological systems, the recycle terms
can be large, exerting a strong and often dominating influence on
the system. Therefore, partitioning is not suitable. An ap-
propriate solution procedure should handle the matrix as a single
entity.

One of the significant features of the biological flow-
sheeting problem is the fact that the steady state matrix is usually
sparse. Although many solution methods have been developed
which exploit the sparsity of a matrix, most of these rely on the
matrix being symmetrical and diagonally dominant, for example,
in analysis of structures. In our situation, this is not usually the
case, and many of these approches are therefore not suitable.

Five different approaches have been evaluated for com-
puting the solution to the set of non-linear algebraic equations of
the form encountered within biological reaction systems. These
are the methods generally used in chemical engineering flow-
sheeting applications. The five techniques are discussed in detail,
with examples, by Billing (1987) where particular consideration is
given to their application to biological systems. A more formal
and rigorous presentation of the methods can be found in a
number of standard texts, for example Reklaitis (1983),
Westerberg e @/. (1979), Dennis and Schnabel (1983) and
Johnston (1982). In this paper only a brief overview of the
methods is presented. Algorithms for their application can be
found in Appendix B. With each of these methods, an initial
estimate of the state variables must be provided, and the techni-
que is applied iteratively until convergence is reached.

Ditect linearisation
One method of solving a set of non-linear equations is by direct

linearisation. The complete set of non-linear equations is
trepresented by an equivalent set of linear equations, which are
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then solved using exact methods. The process of representation
requires approximation, and this gives rise to an iterative pro-
cedure in which the linear equations become an improved ap-
proximation to the non-linear equations as the solution is ap-
proached.
The linear representation of a non-linear biological reaction
system is demonstrated in Fig. 2. This figure presents the set of
cight non-linear equations for the case study problem. If
numerical values are assigned to any state variables which appear
in the A matrix, then the set of equations has been *‘linearised
directly’’. By solving the linear problem AX = B, a new set of
values for the state variables is determined. In the method of
direct linearisation the new values are used to update the A
matrix, and the procedure is repeated to give an improved ap-
proximation to the solution, and so on.
Linear approximations to non-linear terms in the mass
balance equations can be formulated in a number of ways. In
selecting the appropriate linearisation, 2 set of linear equations
must be chosen which gives rise to a process of iteration that even-
tually converges. This is not always possible; some of the
possibilities may actually diverge. In the situation where more
than one set converges, it is the different rates of convergence
from a range of starting values that will determine the selection.
It is difficult to generalise about the rate of convergence, or about
the region from which convergence will be possible. Generally,
howevet, it is possible to construct some form of linear approx-
imation which, from a starting -point sufficiently close to the solu-
tion, will eventually converge to that solution.
Although the method of direct linearisation as described
above was successfully applied to a variety of biological system
configurations, particular drawbacks to its application should be
noted:
® Non-linear terms in the equations must be linearised. This
can require extensive mathematical manipulation before the
method can be implemented.

® Some linear approximations lead to systems of equations
which do not converge. Therefore, a certain amount of skill,
and perhaps trial and error, is necessary in selecting suitable
linearisations (see Appendix A).

® A set of linear equations must be set up for each system con-
figuration and each biological model. Any changes to the
model or the configuration will necessitate a complete re-
working of the equations.

Successive substitution

Successive substitution is a fixed point iteration method which re-

quires the rearrangement of the non-linear equations f_(x,) = 0

in the form x_ = g_(x,_). The current estimate of the solution is

substituted into the functions g_(x) to provide updated values.

Although the method of successive substitution has the ad-

vangage of being simple and straightforward in its application,

certain drawbacks are apparent:

® A certain amount of mathematical manipulation is necessary
before the method can be applied, as the equations need to be
rearranged in a form suitable for the fixed point iteration.

® The convergence behaviour of the method depends on the
form of rearrangement. Functions that display sensitivity to
any of the state variables could become unstable and prevent
the system from converging. Also, the rate of convergence is
slow.

® Careful consideration needs to be given to the selection of
starting values. The initial estimates of the state variables
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often need to be vety close to the solution in order to ensure
convergence.

® The set of equations x = g(x) is specific to both the biological
model and the reactor/tecycle configuration. Any changes to
the model or configuration would necessitate a complete re-
working of the equarions.

The secant method of Wegstein

A drawback of the successive substitution method is that its rate
of convergence is only linear. A number of “‘acceleration pro-
cedures’’ have been proposed in order to improve this rate. The
most widely used is Aitken’s (1925) ‘62 acceleration’’ method,
which uses linear extrapolation through two points generated in-
itially by a successive substitution formula. The same idea was
later “‘rediscovered’” by Steffensen (1933) and even later by
Wegstein (1958), and hence it is known under these various
names (Satgent, 1981). The method is 2 one-dimensional ac-
celeration method in which each variable is treated separately by
driving it with a uniquely associated function. Interactions with
other variables are consequently ignored at each iteration.

Reklaitis (1983) notes that Wegstein’s method may en-
counter difficulties if the slope for any variables does not
dominate the slopes associated with the other variables which
have been neglected in deriving the method. In practice, testing
the validity of this assumption would requite the evaluation of all
of the partial derivatives of the functions g, (x). Westerberg e &/.
(1979) comments that this method could suffer from instability
in a multidimensional environment, since large acceleration fac-
tors are encountered in most problems. He suggests using the
bounded Wegstein method with delay, which could involve ap-
plying the acceleration function only every few iterations.

In spite of the shortcomings of Wegstein's method, it re-
mains a commonly used algorithm, and has been accepted as the
‘“‘best’’ one-dimensional method available (Westerberg ez /.,
1979).

Newton’s method

Newton’s method is a more sophisticated root-finding technique
which overcomes the problems of the relatively slow and often
unpredictable convergence properties of the successive substitu-
tion and Wegstein methods. It has 2 much improved rate of con-
vergence, although this is at the computational expense of tequir-
ing values of the partial derivatives of the functions.

The method is based on the idea of approximating a set of
non-linear functions of the form f(x) = 0 by local linear approx-
imations with slopes given by the derivatives of the functions.
These functions ate then used in an iterative procedure that
generates new, and hopefully better, approximations to the solu-
tion.

Newton’s method requites the evaluation of the partial
derivatives of each of the n functions with respect to each of the n
vatiables in order to evaluate the Jacobian matrix. This means
that, if Newton's method is used to solve the biological system
equations, any changes to the model or to the process configura-
tion would requite the re-evaluation of all of the partial
derivatives. To avoid this problem, a finite difference approxima-
tion of the Jacobian may be used. Each term is evaluated as
follows:
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Dennis and Schnabel (1983) show that, when the analytical Jaco-
bian in Newton's method is replaced by a finite difference ap-
proximation, the quadratic convetgence properties of Newton’s
method can be retained provided the functions are not too non-
linear. In fact, for most problems, Newton's method using
analytical derivatives and Newton’s method using properly
chosen finite differences are virtually indistinguishable.

A finite difference approach would not save on the major ex-
pense involved in evaluating the n x n partial derivative matrix —
in fact this can be a more costly process than when analytical
derivatives are used. It does, however, render a simulation pro-
gram more generally applicable because of not requiring further
analysis when changes occur in the functions as a result of ad-
justments to the biological model or the system configuration.

Newton's method is generally superior to the successive
substitution method and the secant method of Wegstein. The
major advantages and disadvantages of the method may be sum-
marised as follows:

Advantages:

@ it exhibits quadratic convergence properties;

@ it has been found to be extremely efficient for problems that
are near linear (Johnston, 1982); and

® when the finite difference approximation to the Jacobian is
used, the method has a very general applicability. Any
changes to the biological model or system configuration can
thus be easily incorporated into a computer program without
having to re-evaluate the partial derivatives.

Disadvantages

@ in regions whete the Jacobian is nearly singular, the method
can behave erratically; and

® implementation of the method is a costly exercise, as both the
functions and the Jacobian matrix need to be recalculated at
every iteration.

Broyden’s method

Broyden’s algorithm (Broyden, 1965; 1969) is a modification of
Newton’s method that was designed specifically to reduce the
number of function evaluations necessary in finding a solution to
a set of non-linear simultaneous algebraic equations. It is one of a
whole class of methods which may be termed ‘‘quasi-Newton
methods’’. These are techniques based on the idea of approx-
imating the Jacobian in order to avoid the computational effort
required to evaluate it fully. For a one-dimensional environment,
the secant method fills this role since it is based on approximating
the derivative, £’ (x) of a single function f(x) = 0. Hence, any
quasi-Newton method may be regarded as an n dimensional ex-
tension of the secant method. For any of these techniques, it is
only the method for approximating the Jacobian matrix that will
be different, the rest of the Newton algorithm remains unchang-
ed.

Broyden's method is particulatly suited to flow-sheeting
type problems and has been analysed widely in the chemical
engineering literature. The major advantage of the method, and
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TABLE 1
KINETIC AND STOICHIOMETRIC PARAMETERS USED IN THE
CASE STUDIES. THE BIOLOGICAL MODEL IS PRESENTED IN
PART 1.
Symbol Value Units
Kinetic
parameters:
i 4,0 d!
KS 5,0 g COD m -3
b 0,62 d!
Ky 2,2 g COD(g cell COD) "1 d~!
Ky 0,15 g COD (g COD) !
Stoichiomettic
parametets:
Yy 0,666 g COD cell yield (g COD
utilised) ™!
f 0,08

indeed, the reason for its development, is that it preserves many

of the positive characteristics of Newton's method whilst only re-

quiring roughly half the computational effort with respect to the

Jacobian evaluation.

Certain potential drawbacks to the method should be noted:

® The convergence rate of Broyden’s method is supetlinear but
not of the same otder as Newton's method. Therefore, more
iterations will be required than for Newton’s method.

® A good approximation to the Jacobian matrix is necessary to
seed the method, otherwise it may fail to converge.

® The method can behave erratically in regions where the partial
derivative matrix is nearly singular.

® In many flow-sheeting applications, (for example, the
biological system) the Jacobian matrix is sparse. In updating
the approximation to the Jacobian using Broyden’s method,
non-zero terms {of very small magnitude) may be introduced
into the approximating matrix, B(p), at points where the ttue
Jacobian, J,, would contain zeros. This has certain implica-
tions because part of Broyden’s method involves solving a set
of linear equations incorporating B, (sce Step 3 of the
algorithm in Appendix B). Solution methods such as Gaussian
elimination with pivotal rearrangement will now require more
computation at this step because the matrix has become less
sparse. This will partially negate the benefit of fewer function
evaluations required to set up the Jacobian.

Selecting case studies for analysis

The five numerical techniques are now evaluated and compared
in application to solution of a range of specific steady state
biological system problems. Before evaluating the numerical
techniques, two aspects must be specified. The fitst is that a
biological model must be selected. The second is the selection of
a range of reactor configurations to be considered in case studies.
These configurations should incorporate the characteristics of the
various types of flow sheet encountered in practice.
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Selection of a biological model

Considerations that are involved in the selection of a biological
model have been referred to in Part 1. The model selected for the
purpose of evaluating the various numerical techniques in this
study is a restricted version of the IAWPRC Task Group model
for the activated sludge process. Only acrobic heterotrophic
growth phenomena have been included, as shown in the model
mattix of Table 2 of the Part 1 paper.

The values for the kinetic and stoichiometric parameters that
have been used in the simulations are in line with those selected
by the IAWPRC Task Group and described by Dold and Marais
(1985); Table 1 summarises these parameters.

Selection of the reactor configurations and operating conditions

An evaluation of the suitability of the different numerical
methods needs to be carried out in the context of the types of
situation that the methods will encounter in practice. For exam-
ple, in a waste-water treatment application, a numerical techni-
que would need to handle problems stemming from a wide varie-
ty of system configurations and operating conditions. These may
range from a simple single reactor process operated at short
sludge age to a more complex system incorporating fumerous
reactors in seties linked by both forward and recycle flows and
operated at a long sludge age.

Five configurations were selected as case studies for
evaluating the numerical methods. These specific configurations
with associated recycles and operating conditions were chosen as
they incorporate facets of a spectrum of systems encountered in
biological waste-water treatment. Although specific to activated
sludge systems, the configurations include certain features
general to most biological reaction systems. Table 2 summarises
the details of the system configurations and operating conditions
for the five test cases. The configurations are shown diagram-
matically in Fig.4. Because a limited biological model was used
for the study, no provision is made for the usual phenomena en-
countered with unaerated reactors e.g. denitrification. Hence, all
the reactors in the test case configurations are aerated even
though unaerated reactors would usually be incorporated in cer-
tain of the configurations; for example, the UCT process (Case
5). Aspects particular to the five selected configurations are as
follows:

Case Study 1: The simplest configuration that could be en-
countered in an activated sludge process. It consists of an aerated
reactor and a settling tank. The underflow from the settling tank
is recycled to the reactor. The configuration is the same as that in-
troduced in Part 1,

Case Study 2: A '‘selector reactor’’ configuration utilised in the
control of sludge bulking. It consists of two aerobic reactors in
series, the first reactor being very much smaller than the second
(volume ratio 1:32). All the feed enters the first reactor, as does
the underflow from the settling tank.

Case Study 3: A “‘contact stabilisation’’ process, in which all the
feed enters the ‘‘contact’ teactor, which is the second of two
aerobic reactors in seties. The underflow from the settling taak is
recycled to the first reactor.

Case Study 4: Five aerated reactors in series, with all the feed
entering the first reactor. Undetflow from the settling tank is
recycled to the first reactor in the series.
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TABLE 2
SUMMARY OF SYSTEM CONFIGURATIONS AND OPERATING CONDITIONS FOR THE CASE STUDIES SHOWN IN FIG. 4.
Case 1 Case 2 Case 3 Case 4 Case 5
Configuration Single Selector Contact Series ucr
reactor reactor stabilisation reactors process
Reactor 1 8 0,25 12 1,5 2
Reacror Reactor 2 8 2 1,5 3
volumes Reactor 3 1,5 6
o Reactor 4 1,5
Reactor 5 1,5
Sludge age (d) 3 3 6 5 20
Feed rate (6d™) 20 20 36 20 10
RAS recycle rate (id™") 20 20 72 20 10
From reactor 3
A recyde To reactor 2
Rate ((d7) 40
From reactor 2
B recycle To reactot !
Rate ({d™") 10
Influent COD 500 g.m > [Sg = 100 gCOD.m ~3; X = 400 gCOD.m ]

Oy 1Oy
QO

CASE STUDY 3

-O-O-O-0O00~

CASE $TUDY 4

CASE STUOY 1

CASE STUDY 3

Figure 4
The case study reactor and recycle configurations.
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Case Study 5: A **UCT process’’ with three reactors in series. The
distinguishing feature of the configuration is the arrangement of
recycles between reactors. Mixed liquor recycles are taken from
the third to the second and from the second to the first reactors.
Undetflow from the settling tank is recycled to the second reactor
in the series. All the feed enters the first reactor.

Criteria for evaluating numerical methods

The general characteristics, advantages and disadvantages of the

five selected numerical methods have been outlined earlier. In at-

tempting to select a numerical method appropriate to a particular

application, the main criteria that need to be satisfied are:

® the method must offer a reasonable guarantee of convergence
to a solution from the specified initial values; and

@ it should converge as ‘‘efficiently’’ as possible.

The “‘efficiency’” of a method is a measure of how much com-

putational effort is required to calculate a reasonable approxima-

tion to a solution. Two aspects need to be considered here:

@ the number of iterations required before a method converges;
and

@ the amount of computation required to perform each itera-
tion.

In general, when compating numerical methods, it has been
found that those that are superior with respect to guarantee of
convergence will usually be slow. Conversely, the faster numerical
methods are more likely to diverge (Johnston, 1982). Conse-
quently, in choosing a numerical method, a decision has to be
made as to which qualities are more important at any one time.
For example, in situations where the location of the solution is
completely unknown, a slow method, but one which is unlikely
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to diverge despite crude initial estimates, will be preferred.
Implementation of the numerical methods

A computer program was written to test the different numerical
techniques. The simulation program was written in Turbo Pascal
(Borland, 1985), a language which was found to be suitable for
use with an IBM PC or compatible machine. The program was
specific to the selected biological model but allowed flexibility in
the choice of system configuration and operating conditions.
Each numerical technique was written as a module, which was
then inserted in its entirety into the simulation program. This
was done in an effort to eliminate any bias that might be in-
troduced by different programming codes affecting the relative
efficiencies of any of the methods. That is, computer codes for
setting up and evaluating reaction rates, reactor input and output
fcrms, etc., wete common to all the methods.

The solution to the steady state problem is reached when the
set of mass balance equations, f(x) = 0, is satisfied within a
specified convergence ctiterion. In converging to the solution, a
measure of the accuracy of the current values at each iteration is
given by the magnitude of the functions. To have some global
measure which will embrace all the state variables, the con-
vergence criterion was formulated in terms of

£ (] (11)

It was assumed that a solution had been reached when this sum-
mation was less than a certain error tolerance. In choosing the
magnitude of this tolerance, a balance between efficiency and
reliability should be maintained. The convergence tolerance must
be reasonably small in order to prevent early termination. Choos-
ing too small a value, however, can delay termination un-
necessarily. The selection of 103 as the convergence tolerance was
found through practice to result in accurate solutions. At the
same time, it is not so stringent that the numerical methods take

unacceptably long to satisfy it.

Two features incorporated in the computer program which
are not specific to discussion of the numerical methods, but
which may be of interest are:
® calculation of sludge wastage rate in accordance with a

specified sludge age: and
® the initial estimates of the solution.

These aspects are discussed in Appendix C.
Case study results and discussion

The five numetrical methods discussed were applied to each test

case. Each method was allowed to run until convergence was

achieved, and subsequently assessed in terms of:

@ how long it took to reach an acceptable solution from a stan-
dard set of starting values; and

® how many iterations were required for the given convergence
criterion. (All the results were obtained using Tutbo Pascal
Version 3.0 running on a standard IBM PC operating at 4,77
MHz. The configuration did not include an 8087 maths co-
processor).

The results for each method and test case are presented in Table
3. Certain overall aspects are apparent from the results. These are
discussed below. In addition, a more detailed comparison of
some of the numerical methods was catried out to assess the ac-
tual manner in which different techniques approached the solu-
tion. For certain of the techniques, this evaluation involved ex-
amination of potential instability problems. For othets, an assess-
ment was made regarding exactly how much computational
energy was expended at each point in an iteration loop. This was
to develop a greater understanding of the behaviour of each
method in its practical implementation, and to establish a
qualitative feel for more than just the convergence properties of a
particular technique. The more detailed comparison of methods
is discussed in the following sections.

TABLE 3
TEST CASE RESULTS
METHOD
Direct Successive Wegstein’s Newton’s Broyden’s
linearisation substitution method method method
Its. Time Its. Time Its. Time Its. Time Its. Time
CASE 1
Single reactor 16 12,9 108 41,8 133 54,1 4 5.5 5 7.0
CASE 2
Selector reactor 16 24,8 256 143,5 258 175,5 4 12,2 10 32,0
CASE 3
Contact 12 18,3 619 347,0 576 391,4 4 12,2 8 25,5
stabilisation .
CASE 4
Five-in-series 14 62,6 1 663 2945,2 1 605 3004,9 3 36,4 - 7 49,6
CASE 5
UCT process 10 25,1 606 501,5 615 605,4 4 24,1 8 49,2
where Its. = number of iterations
Time = time in seconds
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General comments

@ All the methods converged to the same solution for all the test
cases. However, it should be remembered that for the direct
linearisation approach, successive substitution and Wegstein's
method, the set of equations had to be atranged in particular
ways in order for convergence to be attained. Some forms of
rearrangement of the equations did not converge from the
specified initial conditions.

@ The test case results bear out a generally expected trend of
convergence characteristics. The successive substitution and
Wegstein methods, exhibiting only linear convergence rates,
needed significantly more iterations to converge to a solution.
Newton's method, with a quadratic rate of convergence, re-
quires very few iterations to attain convergence. Broyden’s
method, which has a convergence rate that is superlinear,
although not quadratic, required approximately twice as
many iterations to converge as did Newton’s method.

@ For all the case studies, Newton's method was always the
fastest to converge. Despite the fact that each iteration in this
method involves a complete re-computation of the Jacobian
matrix, the computational time expended per iteration is not
excessive. In addition, the case studies verify the advantage of
the quadratic convergence rate, as Newton'’s method requires
significantly fewer iterations than any of the other methods to
reach a solution. This seems to be irrespective of the complexi-
ty of the configurations, as the method consistently required
only three or four iterations to converge.

@ Broyden’s method generally required approximately twice as
many iterations as Newton’s method. This is in agreement
with the general convergence characteristics of quasi-Newton
methods i.e. those using an approximation to the Jacobian
matrix. However, the time taken to reach convergence by the
two methods should then be approximately equal, given that
Broyden's method requires only half the number of function
evaluations to estimate the Jacobian. Examination of Table 3
shows that, in practice, this does not occur. In fact, Broyden’s
method consistently required longer than Newton’s method
to converge. This aspect is discussed in more detail later.

® Both the methods of Wegstein and successive substitution
wetre found to perform consistently poorly for all the test cases.
This was not entirely unexpected. The fact that both are sim-
ple to implement and require vety little computational effort
per iteration is counterbalanced by inferior rates of con-
vergence.

® Successive substitution and Wegstein’s method may appear to
perform disproportionately poorly for the five-in-series reactor
configuration of Case 4. On consideration, however, this
result is to be expected. Both these methods involve fixed
point iteration in which each state variable is modified
without regard for the simultaneous changes in other variables
at each iteration. In contrast, Newton’s method, for example,
accounts for this “‘simultaneity’’ via the partial derivatives in
the Jacobian. Therefore, when successive substitution or
Wegstein’s method is applied to a long train of reactors with
no internal recycles such as Case 4, inaccuracies in the initial
estimates ‘‘work through’’ the system slowly. The perfor-
mance of these methods is improved relatively when internal
recycles are included in the configuration as in Case 5 for ex-
ample. These recycle links in effect partially account for the
interaction between the state vatiables which is not directly
considered with successive substitution or Wegstein's method.
To explain this, consider a certain compound in a two-reactor
system where the respective concentrations are denoted by x,
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and x,. If there is no recycle from reactor 2 to reactor 1, then
the mass balance equation for x, does not contain the variable
x,- As a result, in the fixed point iteration step for x, the in-
fluence of the variable x, is distegarded. In contrast, if there is
a recycle from reactor 2 to 1, then the variable x, is incor-
porated in the mass balance equation for x;. In this case,
cognisance is given to x, when iterating for x,.

® The performance of Wegstein’s acceleration method com-
pared to that of successive substitution was surprisingly poor.
The lack of improvement over successive substitution indicates
that Wegstein’s method is not an appropriate acceleration
technique for these types of functions. A more detailed ex-
amination of the relative merits of successive substitution and
Wegstein's method is presented later.

® The direct linearisation method produced very favourable
results for all the test cases. Accurate solutions wete achieved,
and convergence was both rapid and efficient. In fact, for Case
4, its performance is almost comparable to that of Newton’s
method. The efficiency of the method also seems to be
relatively independent of the complexity of the system con-
figuration and operating conditions. In fact, fewer iterations
and computational effort wete required to reach a solution in
Case 5 — the most complex configuration — that in Case 1 —
the simplest case study. The reason for the success of the direct
linearisation method is that the functions for the biological
system under consideration are not particularly non-linear in
the regions of interest, and thus the linearised functions give a
good approximation to the non-linear equations. However, as
noted earlier, a severe drawback of the methed is the prior
skill and mathematical manipulation that are necessary before
the method can be implemented.

Comparison of the Wegstein and successive substitution methods

These two numerical methods both reached convergence for all
situations, although in Case 4 many iterations were required
before the tolerance was eventually satisfied. The amount of com-
putational time expended per iteration for both techniques is
near equal, although Wegstein's method generally takes slightly
longer than successive substitution for each loop. This is to be ex-
pected, as the methods are identical except for the relatively inex-
pensive additional calculation of acceleration factors and checks
on these that are introduced with Wegstein's method.

The number of iterations required by each methed in order
to attain convergence was found to be near equal, although
Wegstein’s method consistently required a few more iterations
than did successive substitution. This is contrary to what was ex-
pected, as Wegstein's method was originally implemented to ac-
celerate the rate of convergence of successive substitution. This
result demanded further investigation.

To examine the phenomenon more fully, vatious modifica-
tions of Case Study 1 were considered. In one of these modifica-
tions, the sludge age was changed to 30 d instead of 3 d (all other
parameters were maintained as before) and both methods were

re-tested. Fig. 5 shows the trend observed in the sum of the

squares of the function values, which was used as the stopping
ctiterion for both methods. As expected, Wegstein's acceleration
method moves to the region of solution more rapidly than does
successive substitution. What is surprising, however, is that
ultimately Wegstein’s method requires mote iterations to reduce
the error to within the specified tolerance. On closer examination
it was apparent that the reason for this behaviour was slight in-
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stability introduced by Wegstein’s method. This is not readily
noticeable in the plot of Fig. 5.

Fig. 6 shows the path followed by the concentration of par-
ticulate biomass, Xj, in approaching the solution for Case Study
1. Again, with Wegstein's method, the value of Xy initially con-
verges more rapidly to the solution, with less overshoot, as would
be expected. However, although the general trend introduced by
the acceleration is towards a more ‘‘damped’ path, the in-
dividual points on the curve have more of a tendency to oscillate
than those generated by the successive substitution technique.
When the solurion is approached, this instability prevents the
convergence criterion from being satisfied.

It appears from the results that there would perhaps be some
merit in using the approach suggested by Westerberg ez /.
(1979); that is, applying Wegstein's method at intervals. This
would presumably accelerate the successive substitution whilst
avoiding the instabilities associated with Wegstein’s method.

Comparison of Broyden’s and Newton’s methods

The relative convergence rates of these two methods bear out the
expected trends: Broyden’s method does not converge as rapidly
or as efficiently as Newton's method. However, the fact that
Broyden's method is so computationally expensive merits further
investigation.

Case Study 2 was used to examine the details of how the
computational energy for each iteration in the methods was
distributed. Table 4 shows this *‘division of effort’” for the se-
cond, third and fourth iterations. Both techniques took approx-
imately 3 s to complete each iteration. The major components are
the time required to set up the Jacobian (or its approximation)
and the time required to solve the resulting set of linear equa-
tions.

® Previous discussion indicated that the major advantage of
Broyden’s method is that, to set up the Jacobian approxima-
tion, it requires fewer function evaluations at each iteration
than Newton's method and thus should require less time per
iteration. An examination of the results in Table 4 shows that
the time spent by Broyden's method in updating the approx-
imation to the Jacobian is roughly half that spent by Newton's
method in re-evaluating the complete mattix of partial
derivatives (0,98 s versus 2,02 s). This is to be expected as half
the number of function evaluations are required when using
Broyden's method.

® The major expense in Broyden's method is the dispropor-
tionate time spent in solving the resulting system of linear
equations by the Gauss elimination procedure used here. In
Broyden's method, the Gauss elimination takes more than
twice as long to implement as it does in Newton's method
(1,72 s vetsus 0,72 s). The reason for this is that small non-
zero terms are inttoduced into the matrix by Broyden’'s up-
daring formula in locations that would usually contain zeros in
the Jacobian. This effectively reduces the sparsity of the
Broyden matrix and severely hampers the operation of the
Gaussian technique, which relies on pivotal rearrangement for
its efficiency.
From the results above, it is apparent that, if the saving in the
number of function evaluations in Broyden’s method is to be ex-
ploited, then attention should be paid to the method used to
solve the linear equations. Perhaps this could be improved by us-
ing some specialised matrix technique, rather than the Gaussian
elimination used here.

TABLE 4
COMPARISON OF TIME PER ITERATION AS EXPENDED BY
BROYDEN’S AND NEWTON’S METHODS FOR ITERATIONS 2

TO 4 IN CASE STUDY 2.

Case study Time (s)
Iteration Broyden’s Newton’s
number method method

2 Gauss 1,71 0,72
matrix 0,98 2,04
3 Gauss 1,76 0,71
mattix 0,99 1,98
4 Gauss 1,70 0,72
matrix 0,98 2,03
whete Gauss = time spent solving linear equations
Matrix = time spent updating the matrix

General conclusions

® The method of direct linearisation, although performing

relatively efficiently for these test cases, is not a suitable
technique for general use in a simulation program. Thus,
although the preliminary analysis seems to have paid off in
the satisfactory performance of the method, the requirements
of the program that it be as generally applicable as possible
eliminates direct linearisation from the possibilities that can
seriously be considered.

® The methods of Wegstein and successive substitution,

although simple and robust, are inappropriate due to their
slow rates of convergence. Instability problems may be en-
countered in their implementation and, as a result, con-
vergence cannot always be guaranteed.

@ The poor performance of Wegstein's method in comparison to

that of successive substitution could perhaps be eliminated by
applying Wegstein only at selected intetvals, as suggested by
Westerberg ez 4/. (1979).

® Broyden's method converges to a solution in comparatively

few iterations. The computational effort required to set up the
Jacobian approximation is roughly half that required by
Newton’s method in setting up the true Jacobian. However,
the method as implemented here requires an excessive
amount of computational effort pet iteration. The major por-
tion of this effort is concentrated in the solution of the system
of linear equations. Perhaps this bottleneck could be removed
by employing a specialised sparse matrix technique.

@ Of the methods evaluated, Newton's appears to be the most

favourable. In addition, the use of a finite difference approx-
imation to the Jacobian matrix rendets it a generally suitable
technique for the biological flow-sheeting systems under con-
sideration.
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Appendix A
Multiple possibilities for direct linearisation.

fX,Y) = XxY (A.1)

To create a linear approximation, the first two terms of a Taylor’s
expansion about the point (X,,Y,) can be formulated. The
point (X,,Y,) should lie in the region of interest. This will yield:

£X,Y) = £X, Vo, o) +5% | ax +2£) Ay (a2

(X0, Y0) Y  (xo0,Y0)
with AX = X-X,and AY = Y-Y,.
This simplifies to:
fiX,Y)= X,Y + XY, - X,Y, (A.3)

Eq. (A.3) represents one possible linear approximation to Eq.
(A.1). There are, however, other possible linear equations that
could be used to approximate the non-linear equation. Other op-
tions can usually be developed from a further examination of Eq.
(A.2) as well as utilising additional information as regards the
point (X,,Y,). If, for example, AX = AY,X, =1 000 and Y, =
1, then the differing ordets of magnitude of the two terms could
be used to make an important simplifying assumption to Eq.
(A.2). In this case, consider the conttibution of the terms

9f | AX = Y,AX = 1.AX

IX  (%0.Y0)

and
2f | AY = X,AY = 1000AY
Y (xo,Y0)

When AX = AY, the first term will be negligible in comparison
to the second. Therefore, Eq. (A.2) could be reduced to:

£X,Y) = X, Y)go v + 2L | AY (A.4)
Y  (xo,Y0)
which yields the linear approximation
fX,Y) = X, Y, + X,(Y-Y,)
=X,Y (A.5)

The approach leading the Eq. (A.5) is one that can often be used
successfully in the direct linearisation method for biological
systems. This simplification is possible because these systems
often incorporate particulate compounds at high concentrations
and soluble compounds at low concentrations. The reason for in-
terest in this approach is that it often leads to simpler equations
(compare Eqs. (A.3) and (A.5)).

To illustrate applying this simplification in biological
systems, let us return to the case study of the single reactor plus
settler. Consider the non-linear term in Eq. (1):

ji g Xy v
(K + Sg)

(A.6)

A linear approximation to this term can be created in a number
of ways. These include, amongst others, the following two
possibilities:
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® A complete Taylor’s expansion about the point (X5, S,)-

® The same Taylor’s expansion could be employed, but the
resulting linearisation could be further simplified by using the
fuct that we have additional information as regards the nature
of certain of the terms in the equation.

For rhe second option, we note that, for every unit of soluble
subsrate (Sg), utilised, Y units of biomass (X;) are created.
Because Y = 0,66, we can assume that AXy and ASg are of
similar magnitude i.e.

AXy=AS (A7)
In addition, in the situations encountered in practice, the con-
centration of Sy is generally low (= 1) and the concentration of
X is generally high (= 1000). Thus, the non-linear term of Eq.
(1) could be linearised using the simplifying assumptions outlin-
ed for Eq. (A.5) in the region (X, S;,) as follows:

A

L2STAMFY (A.8)
(K + Sg0)
This is the approach that has been used in the method of direct
linearisation employed in the simulation program hete. Similar
simplifying assumptions may be applied to all the non-linear
terms in the mass balance equations.

f(X;5,S5) =

Appendix B:
Algorithms for the numerical techniques.
The ditect lineatisation algorithm

Stzep 1: Set up linear approximations for all the non-linear terms
in the n mass balance equations f(x) = 0.

Step 2: Arrange the linearised equations into the form AX = B.

Step 3: Initialise the A matrix with sced values of the state
variables.

Step 4: Find new values of the state variables, X, by establishing

the solution to the matrix problem

AX =8B

using Gaussian elimination.

Step 5: Test for convergence.
If the convergence criterion is satisfied, then terminate
the iteration. Otherwise, insert the new values of the
state variables into the A matrix and return to Step 4.

The successive substitution algorithm
Step 1: Arrange the n equations £(x) = 0 in the form x = g(x).

Step 2: Select an initial estimate for the state variables, Xy and
a suitable convergence criterion.

Step 3: Calculate
Xpa1) = B(Xgp)

Step 4: Test for convergence
Ifx Ig(x(Pz) = Xpe |2 < convergence tolerance
then terminate the iteration.
Otherwise, replace x; by X1y and return to Ssep-3.
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The Wegstein algorithm

Step 1: Arrange the n equations f(x) = 0 in the form x =
= 0.

g(x)

Step 2: Select an initial estimate for the state variables, x,, and

a suitable convergence criterion, and upper and lower
bounds for t. (| Cupper | = =t

tlower ‘max* )

Step 3: Calculate
X1 = K(x)(o))
Step 4: Calculate the slopes
- 8(")(9) = 8(®)p-y
e T *e-1

Step 5: Calculate
1
(1-m)
If|g |>t  theny = ¢,

t =

Step 6: Calculate
Xpan = (1=0 x5 + - g(®),

Step .7: Test for convergence
Ifx|g, (Xp) ~ Kps1 | < convergence tolerance

then terminate the iteration.
Othetwise, teplace x;, by x,, ;) and return to Step 4.

The Newton algorithm

Step 1: Express the non-linear functions in the form f(x} = 0.
Select initial estimates for the roots x, and a suitable
convergence criterion.

Step 2: Evaluate J(x)

Step 3: Calculate Xpat) = Xy = [J® ] 7" - £(x),, as follows:
(i) Solve the set of linear equations:
J® ) - by = - fx),
or
(if) %, 1= X + by,

Step 4: Test for convergence
Ifx Ifi(x(p)) |? < convergence tolerance

then terminate the iteration.
Otherwise, replace X(p) by x, . 1) and retutn to Srep 2.

The Broyden algorithm

Step 1: Exptess the non-linear functions in the f(x) = 0. Select
initial estimates for the roots x,, an initial approxima-
tion to the Jacobian matrix, B, and a suitable con-
vetgence ctiterion.

Step 2: Solve the set of linear equations
B, - 8y = ~£(x) for 55

Step 3: Calculate

Xo+1) = Xp) * Sp)
Yor = f®0g) = £x)p-y
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Step 4: Calculate ) :
T
By = Be-yy + ) ~ Be- " S) )
$(0)5)
Step 5: Test for convergence
Ifz Ifi(x(p)) |? < convergence tolerance
then terminate the iteration.
Otherwise, replace x; by x(, and retutn to Step 2.

Appendix C:
Calculation of the wastage rate, q,
In setting up the simulation problem, sludge age (solids retention

time, SRT) is specified as an operating parameter. This is defined
as:

Mass of sludge in the system

Sludge age =
Mass of sludge wasted per day
Mass of sludge in the system (C.1)
9w - Ca
where C, = concentration of solids in the n** reactor.

In this study, it is assumed that sludge wastage always comes from
the last reactor (n™) in the series i.e. hydraulic control of sludge
age. If all the feed enters the first reactor, then the settling tank
underflow is recycled to the first reactor and the concentration of
sludge from reactor to reactor is more or less constant. In this case,
the required sludge wastage rate, q,, to maintain a specified
sludge age is given by:

.. Total volume of system
Sludge age

(C.2)

w

When specifying sludge age as an operating parameter, a pro-
blem in calculating the required wastage rate occurs where the
concentration of sludge varies from reactor to reactor. This will be
encountered when the feed enters, for example, the second reac-
tor in the contact stabilisation process (Case 3) or where the settler
underflow is not recycled to the first reactor as in the UCT process
(Case 5). The problem arises because the wastage rate can only be
determined once the distribution of sludge between the reactors
and particularly the concentration in the last reactor is known.
However, this concentration is influenced by the wastage rate
itself. To overcome this problem, the following iterative pro-
cedure was employed for calculating wastage rate once the reactor
configuration and feed and recycle rates had been specified:

Step 1: Assume that a particulate inert tracer is introduced into
the influent at some constant concentration. This fixes
the mass of inert tracer in the system for a given sludge
age. Mass of tracer = Daily inflow x concentration of
tracer in the influent x sludge age.

Step 2: Provide an initial estimate of the wastage rate from Eq.
(C.2).

Step 3: For the selected q, solve the set of mass balance equa-
tions describing the concentration of tracer in each reac-
tor and in the underflow recycle. This is a set of linear
equations.

Step 4: Recalculate the wastage rate from Eq. (C.1).

205




Step 5: Test for convergence.
If convergence is achieved, then terminate the iteration.
Otherwise, return to Szep 3.

Initial estimates of the solution

To initiate any of the iterative numerical procedures, an estimate
of the solution is requited. If these estimates ate not accurate, it is
possible that the numerical method will not converge to the cor-
rect solution. Also, the less accurate the initial estimate, the
greater the number of iterations that will be required to attain
convergence.

In the computer program, initial estimates of the state
variables are based on steady state waste-water treatment theory
(WRC, 1984) and on empitical estimates. The simulation pro-
gram estimates the masses of the active organism (X;) and en-
dogenous residue (Xg) fractions from this theory, based on the
effective steady state endogenous respiration rate. The masses of
these particulate materials, biomass, X5, and endogenous
residue, X;, are distributed amongst the reactors in accotdance
with the distribution of the inert particulate tracer as discussed
above. The initial concentration of particulate substrate, X, in
each reactor is assumed to always be 10 per cent of X;, and the
initial estimate of the soluble substrate, S, is always taken as 1,5
g COD m"3,
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